Journal of Energy Bioscience 2025, Vol.16, No.2, 75-84 http://bioscipublisher.com/index.php/jeb 83 Karunarathna N., Wang H., Harloff H., Jiang L., and Jung C., 2020, Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes, Plant Biotechnology Journal, 18: 2251-2266. https://doi.org/10.1111/pbi.13381 Liu H., Lin B., Ren Y., Hao P., Huang L., Xue B., Jiang L., Zhu Y., and Hua S., 2022, CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed (Brassica napus L.), Frontiers in Plant Science, 13: 1034215. https://doi.org/10.3389/fpls.2022.1034215 Lovasz A., Sabău N., Borza I., and Brejea R., 2023, Production and quality of biodiesel under the influence of a rapeseed fertilization system, Energies, 16(9): 3728. https://doi.org/10.3390/en16093728 Malça J., Coelho A., and Freire F., 2014, Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations, Applied Energy, 114: 837-844. https://doi.org/10.1016/J.APENERGY.2013.06.048 Rashid U., and Anwar F., 2008, Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil, Fuel, 87: 265-273. https://doi.org/10.1016/J.FUEL.2007.05.003 Sandgrind S., 2022, Genome editing of oilseed species by CRISPR/Cas9 for trait improvement, Acta Universitatis Agriculturae Sueciae, (2022: 77). https://doi.org/10.54612/a.2ov9dn53u6 Santaraite M., Sendžikienė E., Makarevičienė V., and Kazancev K., 2020, Biodiesel production by lipase-catalyzed in situ transesterification of rapeseed oil containing a high free fatty acid content with ethanol in diesel fuel media, Energies, 13: 2588. https://doi.org/10.3390/en13102588 Saqib M., Mumtaz M., Mahmood A., and Abdullah M., 2012, Optimized biodiesel production and environmental assessment of produced biodiesel, Biotechnology and Bioprocess Engineering, 17: 617-623. https://doi.org/10.1007/s12257-011-0569-6 Sendžikienė E., Makarevičienė V., and Santaraite M., 2022, Simultaneous extraction of rapeseed oil and enzymatic transesterification with butanol in the mineral diesel medium, Energies, 15(18): 6837. https://doi.org/10.3390/en15186837 Spasibionek S., Mikołajczyk K., Ćwiek-Kupczyńska H., Pietka T., Krótka K., Matuszczak M., Nowakowska J., Michalski K., and Bartkowiak-Broda I., 2020, Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value, PLoS ONE, 15(6): e0233959. https://doi.org/10.1371/journal.pone.0233959 Tanner A., Baranek M., Eastlack T., Butts B., Beazley M., and Hampton M., 2023, Biodiesel production directly from rapeseeds, Water, 15(14): 2595. https://doi.org/10.3390/w15142595 Tian C., Zhou X., Liu Q., Peng J., Zhang Z., Song H., Ding Z., Zhran M., Eissa M., Kheir A., Fahmy A., and Abou-Elwafa S., 2020, Increasing yield, quality and profitability of winter oilseed rape (Brassica napus) under combinations of nutrient levels in fertiliser and planting density, Crop and Pasture Science, 71: 1010-1019. https://doi.org/10.1071/CP20328 Tian Q., Li B., Feng Y., Zhao W., Huang J., and Chao H., 2022, Application of CRISPR/Cas9 in rapeseed for gene function research and genetic improvement, Agronomy, 12(4): 824. https://doi.org/10.3390/agronomy12040824 Viccaro M., Cozzi M., Rocchi B., and Romano S., 2019, Conservation agriculture to promote inland biofuel production in Italy: An economic assessment of rapeseed straight vegetable oil as a self-supply agricultural biofuel, Journal of Cleaner Production, 217: 153-161. https://doi.org/10.1016/J.JCLEPRO.2019.01.251 Wang Z., Wan L., Xin Q., Zhang X., Song Y., Wang P., Hong D., Fan Z., and Yang G., 2021, Optimising glyphosate tolerance in rapeseed (Brassica napus L.) by CRISPR/Cas9-based geminiviral donor DNA replicon system with Csy4-based single-guide RNA processing, Journal of Experimental Botany, 72(13): 4796-4808. https://doi.org/10.1093/jxb/erab167 Xiong H., Wang R., Jia X., Sun H., and Duan R., 2022, Transcriptomic analysis of rapeseed (Brassica napus L.) seed development in Xiangride, Qinghai Plateau, reveals how its special eco-environment results in high yield in high-altitude areas, Frontiers in Plant Science, 13: 927418. https://doi.org/10.3389/fpls.2022.927418 Yang X., Liu Y., Bezama A., and Thrän D., 2021, Two birds with one stone: A combined environmental and economic performance assessment of rapeseed-based biodiesel production, GCB Bioenergy, 14: 215-241. https://doi.org/10.1111/gcbb.12913 Zhang C., Gong R., Zhong H., Dai C., Zhang R., Dong J., Li Y., Liu S., and Hu J., 2023, Integrated multi-locus genome-wide association studies and transcriptome analysis for seed yield and yield-related traits in Brassica napus, Frontiers in Plant Science, 14: 1153000. https://doi.org/10.3389/fpls.2023.1153000 Zhang K., Nie L., Cheng Q., Yin Y., Chen K., Qi F., Zou D., Liu H., Zhao W., Wang B., and Li M., 2019, Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system, Biotechnology for Biofuels, 12(1): 225. https://doi.org/10.1186/s13068-019-1567-8
RkJQdWJsaXNoZXIy MjQ4ODYzNA==