JEB_2025v16n2

Journal of Energy Bioscience 2025, Vol.16, No.2, 64-74 http://bioscipublisher.com/index.php/jeb 74 Miller G., Suzuki N., Ciftci-Yilmaz S., and Mittler R., 2010, Reactive oxygen species homeostasis and signalling during drought and salinity stresses, Plant, Cell & Environment, 33(4): 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x Mishra S., Ganapathi T., Pandey G., Foyer C., and Srivastava A., 2023, Meta-analysis of antioxidant mutants reveals common-alarm signals for shaping abiotic stress-induced transcriptome in plants, Antioxidants & Redox Signaling, 41(1-3): 42-55. https://doi.org/10.1089/ars.2023.0361 Myers R., Fichman Y., Zandalinas S., and Mittler R., 2022, Jasmonic acid and salicylic acid modulate systemic reactive oxygen species signaling during stress responses, Plant Physiology, 191(2): 862-873. https://doi.org/10.1093/plphys/kiac449 Myers R., Peláez-Vico M., and Fichman Y., 2024, Functional analysis of reactive oxygen species-driven stress systemic signalling, interplay and acclimation, Plant, Cell & Environment, 47(8): 2842-2851. https://doi.org/10.1111/pce.14894 Otulak-Kozieł K., Kozieł E., Przewodowski W., Ciacka K., and Przewodowska A., 2022, Glutathione modulation in PVYNTN susceptible and resistant potato plant interactions, International Journal of Molecular Sciences, 23(7): 3797. https://doi.org/10.3390/ijms23073797 Panda S., Gupta D., Patel M., Vyver C., and Koyama H., 2024, Functionality of reactive oxygen species (ROS) in plants: toxicity and control in poaceae crops exposed to abiotic stress, Plants, 13(15): 2071. https://doi.org/10.3390/plants13152071 Postiglione A., and Muday G., 2020, The role of ROS homeostasis in ABA-induced guard cell signaling, Frontiers in Plant Science, 11: 968. https://doi.org/10.3389/fpls.2020.00968 Ravi B., Foyer C., and Pandey G., 2023, The integration of reactive oxygen species (ROS) and calcium signalling in abiotic stress responses, Plant, Cell & Environment, 46(7): 1985-2006. https://doi.org/10.1111/pce.14596 Sahoo M., Devi T., Dasgupta M., Nongdam P., and Prakash N., 2020, Reactive oxygen species scavenging mechanisms associated with polyethylene glycol mediated osmotic stress tolerance in Chinese potato, Scientific Reports, 10: 5404. https://doi.org/10.1038/s41598-020-62317-z Soliman A., Adam L., Rehal P., and Daayf F., 2021. Overexpression of Solanum tuberosum respiratory burst oxidase homolog A (StRbohA) promotes potato tolerance to Phytophthora infestans, Phytopathology, 111(8): 1410-1419. https://doi.org/10.1094/PHYTO-10-20-0482-R Terrón-Camero L., Peláez-Vico M., Rodriguez-González A., Del Val C., Sandalio L., and Romero Puertas M., 2022, Gene network downstream plant stress response modulated by peroxisomal H2O2, Frontiers in Plant Science, 13: 930721. https://doi.org/10.3389/fpls.2022.930721 Xia X., Zhou Y., Shi K., Zhou J., Foyer C., and Yu J., 2015, Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance, Journal of Experimental Botany, 66(10): 2839-2856. https://doi.org/10.1093/jxb/erv089 You J., and Chan Z., 2015, ROS regulation during abiotic stress responses in crop plants, Frontiers in Plant Science, 6: 1092. https://doi.org/10.3389/fpls.2015.01092 Zhang H., Wang Z., Li X., Gao X., Dai Z., Cui Y., Zhi Y., Liu Q., Zhai H., Gao S., Zhao N., and He S., 2021, The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato, The New Phytologist, 233(3): 1133-1152. https://doi.org/10.1111/nph.17860 Zhu Y.L., and Shen Z.C., 2024, Response analysis of root and leaf physiology and metabolism under drought stress in rice, Rice Genomics and Genetics, 15(3): 19-27.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==