JEB_2025v16n2

Journal of Energy Bioscience 2025, Vol.16, No.2, 64-74 http://bioscipublisher.com/index.php/jeb 73 Das K., and Roychoudhury A., 2014, Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants, Frontiers in Environmental Science, 2: 53. https://doi.org/10.3389/fenvs.2014.00053 Dvořák P., Krasylenko Y., Zeiner A., Šamaj J., and Takáč T., 2021, Signaling toward reactive oxygen species-scavenging enzymes in plants, Frontiers in Plant Science, 11: 618835. https://doi.org/10.3389/fpls.2020.618835 Fan W., 2014, Effects of anoxia and post-anoxia on reactive oxygen species(ROS) and antioxidant enzymes in tuber mitochondria of potato(Solanum tuberosum L.), Plant Physiology, 50(3): 283-289. Hasanuzzaman M., Bhuyan M., Zulfiqar F., Raza A., Mohsin S., Mahmud J., Fujita M., and Fotopoulos V., 2020, Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator, Antioxidants, 9(8): 681. https://doi.org/10.3390/antiox9080681 Hipsch M., Lampl N., Zelinger E., Barda O., and Rosenwasser S., 2020, Sensing stress responses in potato with whole-plant redox imaging, bioRxiv. https://doi.org/10.1101/2020.11.26.386573 Hu Y., Zhao H., Xue L., Nie N., Zhang H., Zhao N., He S., Liu Q., Gao S., and Zhai H., 2024, IbMYC2 contributes to salt and drought stress tolerance via modulating anthocyanin accumulation and ROS-scavenging system in sweet potato, International Journal of Molecular Sciences, 25(4): 2096. https://doi.org/10.3390/ijms25042096 Hua, D., Duan, J., Li, Z., and Li, H., 2020, Reactive oxygen species induce cyanide-resistant respiration in potato infected by Erwinia carotovora subsp. Carotovora, Journal of Plant Physiology, 246-247: 153132. https://doi.org/10.1016/j.jplph.2020.153132 Huang S., Van Aken O., Schwarzländer M., Belt K., and Millar A., 2016, The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants1, Plant Physiology, 171: 1551-1559. https://doi.org/10.1104/pp.16.00166 Jajić I., Sarna T., and Strzałka K., 2015, Senescence, stress, and reactive oxygen species, Plants, 4: 393-411. https://doi.org/10.3390/plants4030393 Koubaa R., Ayadi M., Saidi M., Charfeddine S., Gargouri-Bouzid R., and Nouri-Ellouz O., 2021, Comprehensive genome-wide analysis of the catalase enzyme toolbox in potato (Solanum tuberosumL.), Potato Research, 66: 23-49. https://doi.org/10.1007/s11540-022-09554-z Lei C., Ye M., Li C., and Gong M., 2023, H2O2 participates in the induction and formation of potato tubers by activating tuberization-related signal transduction pathways, Agronomy, 13(5): 1398. https://doi.org/10.3390/agronomy13051398 Li S., Liu S., Zhang Q., Cui M., Zhao M., Li N., Wang S., Wu R., Zhang L., Cao Y., and Wang L., 2022, The interaction of ABA and ROS in plant growth and stress resistances, Frontiers in Plant Science, 13: 1050132. https://doi.org/10.3389/fpls.2022.1050132 Li X., Wang Z., Sun S., Dai Z., Zhang J., Wang W., Peng K., Geng W., Xia S., Liu Q., Zhai H., Gao S., Zhao N., Tian F., Zhang H., and He S., 2024, IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato, Journal of Integrative Plant Biology, 66(2): 176-195. https://doi.org/10.1111/jipb.13612 Li C.Y., and Huang Y.M., 2024, Metabolic engineering of tea: enhancing bioactive compound production, Bioscience Methods, 15(3): 114-123. Lukan T., and Coll A., 2022, Intertwined roles of reactive oxygen species and salicylic acid signaling are crucial for the plant response to biotic stress, International Journal of Molecular Sciences, 23(10): 5568. https://doi.org/10.3390/ijms23105568 Luo X., Tian T., Bonnave M., Tan X., Huang X., Li Z., and Ren M., 2021, The molecular mechanisms of Phytophthora infestans in response to reactive oxygen species (ROS) stress, Phytopathology, 111(11): 2067-2079. https://doi.org/10.1094/PHYTO-08-20-0321-R Ma L., Jiang H., Bi Y., Li Y., Yang J., Si H., Ren Y., and Prusky D., 2021b, The interaction between StCDPK14 and StRbohB contributes to Benzo-(1, 2, 3)-Thiadiazole-7-Carbothioic acid S-Methyl Ester-induced wound healing of potato tubers by regulating reactive oxygen species generation, Frontiers in Plant Science, 12: 737524. https://doi.org/10.3389/fpls.2021.737524 Ma R., Liu W., Li S., Zhu X., Yang J., Zhang N., and Si H., 2021a, Genome-wide identification, characterization and expression analysis of the CIPK gene family in potato (Solanum tuberosumL.) and the role of StCIPK10 in response to drought and osmotic stress, International Journal of Molecular Sciences, 22(24): 13535. https://doi.org/10.3390/ijms222413535 Mahalingam R., and Fedoroff N., 2003, Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiologia Plantarum, 119: 56-68. https://doi.org/10.1034/J.1399-3054.2003.00156.X Miller G., Shulaev V., and Mittler R., 2008, Reactive oxygen signaling and abiotic stress, Physiologia Plantarum, 133(3): 481-489. https://doi.org/10.1111/j.1399-3054.2008.01090.x

RkJQdWJsaXNoZXIy MjQ4ODYzNA==