JEB_2025v16n1

Journal of Energy Bioscience 2025, Vol.16, No.1, 42-52 http://bioscipublisher.com/index.php/jeb 51 Greenhaff P., 2001, The creatine-phosphocreatine system: there's more than one song in its repertoire, The Journal of Physiology, 537(Pt 3): 657. https://doi.org/10.1111/j.1469-7793.2001.00657.x Guzun R., Timohhina N., Tepp K., González-Granillo M., Shevchuk I., Chekulayev V., Kuznetsov A., Kaambre T., and Saks V., 2011, Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function, Amino Acids, 40: 1333-1348. https://doi.org/10.1007/s00726-011-0854-x Hao Y., Zhao Y., Yang S., and Zhou Y., 2021, High-energy phosphates and ischemic heart disease: from bench to bedside, Frontiers in Cardiovascular Medicine, 8: 675608. https://doi.org/10.3389/fcvm.2021.675608 Hettling H., Heringa J., and Beek J., 2010, Analysis of the functional properties of the creatine kinase system using a multiscale ‘sloppy’ modeling approach, BMC Bioinformatics, 11: 1-2. https://doi.org/10.1186/1471-2105-11-S10-O9 Jacobus W., 1985, Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase, Annual Review of Physiology, 47: 707-725. https://doi.org/10.1146/ANNUREV.PH.47.030185.003423 Kazak L., and Cohen P., 2020, Creatine metabolism: energy homeostasis, immunity and cancer biology, Nature Reviews Endocrinology, 16: 421-436. https://doi.org/10.1038/s41574-020-0365-5 Kazak L., and Spiegelman B., 2020, Mechanism of futile creatine cycling in thermogenesis, American Journal of Physiology. Endocrinology and Metabolism, 319(5): E947-E949. https://doi.org/10.1152/ajpendo.00444.2020 Kitzenberg D., Colgan S., and Glover L., 2016, Creatine kinase in ischemic and inflammatory disorders, Clinical and Translational Medicine, 5(1): 31. https://doi.org/10.1186/s40169-016-0114-5 Kreider R., and Stout J., 2021, Creatine in health and disease, Nutrients, 13(2): 447. https://doi.org/10.3390/nu13020447 McLeish M., and Kenyon G., 2005, Relating structure to mechanism in creatine kinase, Critical Reviews in Biochemistry and Molecular Biology, 40: 1-20. https://doi.org/10.1080/10409230590918577 Mosher E., Eberhard C., and Bumpus N., 2022, Impact of genetics and age on muscle-type creatine kinase, The FASEB Journal, 36(S1). https://doi.org/10.1096/fasebj.2022.36.s1.r4860 Prokopidis K., Giannos P., Triantafyllidis K., Kechagias K., Forbes S., and Candow D., 2022, Effects of creatine supplementation on memory in healthy individuals: a systematic review and meta-analysis of randomized controlled trials, Nutrition Reviews, 81: 416-427. https://doi.org/10.1093/nutrit/nuac064 Puurand M., Tepp K., Klepinin A., Klepinina L., Shevchuk I., and Kaambre T., 2018, Intracellular energy-transfer networks and high-resolution respirometry: a convenient approach for studying their function, International Journal of Molecular Sciences, 19(10): 2933. https://doi.org/10.3390/ijms19102933 R Core Team, 2018, R: a language and environment for statistical computing, Version 3.5. 1. R Foundation for Statistical Computing, Vienna, Austria, 1: 409. https://www.R-project.org/ Račkayová V., Cudalbu C., Pouwels P., and Braissant O., 2017, Creatine in the central nervous system: from magnetic resonance spectroscopy to creatine deficiencies, Analytical Biochemistry, 529: 144-157. https://doi.org/10.1016/j.ab.2016.11.007 Saks V., Rosenshtraukh L., Smirnov V., and Chazov E., 1978, Role of creatine phosphokinase in cellular function and metabolism, Canadian Journal of Physiology and Pharmacology, 56(5): 691-706. https://doi.org/10.1139/Y78-113 Stockebrand M., Sasani A., Das D., Hornig S., Hermans-Borgmeyer I., Lake H., Isbrandt D., Lygate C., Heerschap A., Neu A., and Choe C., 2018, A mouse model of creatine transporter deficiency reveals impaired motor function and muscle energy metabolism, Frontiers in Physiology, 9: 773. https://doi.org/10.3389/fphys.2018.00773 Sun Y., Rahbani J., Jedrychowski M., Riley C., Vidoni S., Bogoslavski D., Hu B., Dumesic P., Zeng X., Wang A., Knudsen N., Kim C., Marasciullo A., Millán J., Chouchani E., Kazak L., and Spiegelman B., 2021, Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine, Nature, 593: 580-585. https://doi.org/10.1038/s41586-021-03533-z Tachikawa M., Fukaya M., Terasaki T., Ohtsuki S., and Watanabe M., 2004, Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron–glial relationship for brain energy homeostasis, European Journal of Neuroscience, 20(1): 144-160. https://doi.org/10.1111/j.1460-9568.2004.03478.x Vulturar R., Jurjiu B., Damian M., Bojan A., Pintilie S., Jurca C., Chiș A., and Grad S., 2021, Creatine supplementation and muscles: From metabolism to medical practice, Romanian Journal of Medical Practice, 16(3): 317-321. https://doi.org/10.37897/rjmp.2021.3.4 Wallimann T., Dolder M., Schlattner U., Eder M., Hornemann T., Kraft T., and Stolz M., 1998, Creatine kinase: an enzyme with a central role in cellular energy metabolism, Magnetic Resonance Materials in Physics, Biology and Medicine, 6: 116-119. https://doi.org/10.1007/BF02660927

RkJQdWJsaXNoZXIy MjQ4ODYzNA==