JEB_2025v16n1

Journal of Energy Bioscience 2025, Vol.16, No.1, 31-41 http://bioscipublisher.com/index.php/jeb 41 Moghadam Z., Henneke P., and Kolter J., 2021, From flies to men: ROS and the NADPH oxidase in phagocytes, Frontiers in Cell and Developmental Biology, 9: 628991. https://doi.org/10.3389/fcell.2021.628991 Nunes P., Demaurex N., and Dinauer M., 2013, Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis, Traffic, 14(11): 1118-1131. https://doi.org/10.1111/tra.12115 Pollak N., Dölle C., and Ziegler M., 2007, The power to reduce: pyridine nucleotides--small molecules with a multitude of functions, The Biochemical Journal, 402(2): 205-218. https://doi.org/10.1111/tra.12115 Ryoo I., and Kwak M., 2018, Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria, Toxicology and Applied Pharmacology, 359: 24-33. https://doi.org/10.1016/j.taap.2018.09.014 Segal B., Segal B., Grimm M., Khan A., Han W., and Blackwell T., 2012, Regulation of innate immunity by NADPH oxidase, Free Radical Biology and Medicine, 53(1): 72-80. https://doi.org/10.1016/j.freeradbiomed.2012.04.022 Segal B., Segal B., Han W., Bushey J., Joo M., Bhatti Z., Feminella J., Dennis C., Vethanayagam R., Yull F., Capitano M., Wallace P., Minderman H., Christman J., Sporn M., Chan J., Vinh D., Holland S., Romani L., Gaffen S., Freeman M., and Blackwell T., 2010, NADPH oxidase limits innate immune responses in the lungs in mice, PLoS ONE, 5(3): e9631. https://doi.org/10.1371/journal.pone.0009631 Shimizu K., and Matsuoka Y., 2019, Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation, Biotechnology Advances, 37(8): 107441. https://doi.org/10.1016/j.biotechadv.2019.107441 Spaans S., Weusthuis R., Oost J., and Kengen S., 2015, NADPH-generating systems in bacteria and archaea, Frontiers in Microbiology, 6: 742. https://doi.org/10.3389/fmicb.2015.00742 Stasia M., and Li X., 2008, Genetics and immunopathology of chronic granulomatous disease, Seminars in Immunopathology, 30: 209-235. https://doi.org/10.1007/s00281-008-0121-8 Tannous C., Booz G., Altara R., Muhieddine D., Mericksay M., Refaat M., and Zouein F., 2020, Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases, Acta Physiologica, 231(3): e13551. https://doi.org/10.1111/apha.13551 Tao R., Zhao Y., Chu H., Wang A., Zhu J., Chen X., Zou Y., Shi M., Liu R., Su N., Du J., Zhou H., Zhu L., Qian X., Liu H., Loscalzo J., and Yang Y., 2017, Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism, Nature Methods, 14: 720-728. https://doi.org/10.1038/nmeth.4306 Thomas D., 2017, The phagocyte respiratory burst: Historical perspectives and recent advances, Immunology Letters, 192: 88-96. https://doi.org/10.1016/j.imlet.2017.08.016 Vermot A., Petit-Härtlein I., Smith S., and Fieschi F., 2021, NADPH Oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology, Antioxidants, 10(6): 890. https://doi.org/10.3390/antiox10060890 Violi F., Carnevale R., Loffredo L., Pignatelli P., and Gallin J., 2017, NADPH Oxidase-2 and atherothrombosis: insight from chronic granulomatous disease, Arteriosclerosis, Thrombosis, and Vascular Biology, 37(2): 218-225. https://doi.org/10.1161/ATVBAHA.116.308351 Xiao W., Wang R., Handy D., and Loscalzo J., 2018, NAD(H) and NADP(H) redox couples and cellular energy metabolism, Antioxidants and Redox Signaling, 28(3):251-272. https://doi.org/10.1089/ars.2017.7216 Ying W., 2008, NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences, Antioxidants and Redox Signaling, 10(2): 179-206. https://doi.org/10.1089/ARS.2007.1672 Yu H., Yang Y., and Chiang B., 2020, Chronic granulomatous disease: a comprehensive review, Clinical Reviews in Allergy and Immunology, 61(2): 101-113. https://doi.org/10.1007/s12016-020-08800-x

RkJQdWJsaXNoZXIy MjQ4ODYzNA==