JEB_2025v16n1

Journal of Energy Bioscience 2025, Vol.16, No.1, 31-41 http://bioscipublisher.com/index.php/jeb 40 Corpas F., and Barroso J., 2014, NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions, Frontiers in Environmental Science, 2: 55. https://doi.org/10.3389/fenvs.2014.00055 Corpas F., González-Gordo S., and Palma J., 2020, Nitric oxide (NO) and hydrogen sulfide (H2S) modulate the NADPH-generating enzymatic system in higher plants, Journal of Experimental Botany, 72(3): 830-847. https://doi.org/10.1093/jxb/eraa440 Edwards S.W., 1996, The O-2 generating NADPH oxidase of phagocytes: structure and methods of detection, Methods, 9(3): 563-577. https://doi.org/10.1006/METH.1996.0064 El-Benna J., Dang P., Gougerot-Pocidalo M., and Elbim C., 2005, Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses, Archivum Immunologiae et Therapiae Experimentalis, 53(3): 199-206. El-Benna J., Dang P., Gougerot-Pocidalo M., Marie J., and Braut-Boucher F., 2009, p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases, Experimental and Molecular Medicine, 41: 217-225. https://doi.org/10.3858/emm.2009.41.4.058 Ewald C., 2018, Redox signaling of NADPH oxidases regulates oxidative stress responses, immunity and aging, Antioxidants, 7(10): 130. https://doi.org/10.3390/antiox7100130 Ferguson G., and Bridge W., 2019, The glutathione system and the related thiol network in Caenorhabditis elegans, Redox Biology, 24: 101171. https://doi.org/10.1016/j.redox.2019.101171 Fuentes-Lemus E., Reyes J., Figueroa J., Davies M., and López-Alarcón C., 2023, The enzymes of the oxidative phase of the pentose phosphate pathway as targets of reactive species: consequences for NADPH production, Biochemical Society Transactions, 51(6): 2173-2187. https://doi.org/10.1042/bst20231027 Giardino G., Cicalese M., Delmonte O., Migliavacca M., Palterer B., Loffredo L., Cirillo E., Gallo V., Violi F., and Pignata C., 2017, NADPH oxidase deficiency: a multisystem approach, Oxidative Medicine and Cellular Longevity, 2017(1): 4590127. https://doi.org/10.1155/2017/4590127 Glennon-Alty L., Hackett A., Chapman E., and Wright H., 2018, Neutrophils and redox stress in the pathogenesis of autoimmune disease, Free Radical Biology and Medicine, 125: 25-35. https://doi.org/10.1016/j.freeradbiomed.2018.03.049 Hasan A., Kalinina E., Tatarskiy V., and Shtil A., 2022, The thioredoxin system of mammalian cells and its modulators, Biomedicines, 10(7): 1757. https://doi.org/10.3390/biomedicines10071757 Hashida S., Itami T., Takahashi H., Takahara K., Nagano M., Kawai‐Yamada M., Shoji K., Goto F., Yoshihara T., and Uchimiya H., 2010, Nicotinate/nicotinamide mononucleotide adenyltransferase-mediated regulation of NAD biosynthesis protects guard cells from reactive oxygen species in ABA-mediated stomatal movement in Arabidopsis, Journal of Experimental Botany, 61(13): 3813-3825. https://doi.org/10.1093/jxb/erq190 Henríquez-Olguín C., Boronat S., Cabello-Verrugio C., Jaimovich E., Hidalgo E., and Jensen T., 2019, The emerging roles of NADPH oxidase 2 in skeletal muscle redox signaling and metabolism, Antioxidants and Redox Signaling, 31(18): 1321-1411. https://doi.org/10.1089/ars.2018.7678 Hohn D., and Lehrer R., 1975, NADPH oxidase deficiency in X-linked chronic granulomatous disease, The Journal of Clinical Investigation, 55(4): 707-713. https://doi.org/10.1172/JCI107980 Ju H., Lin J., Tian T., Xie D., and Xu R., 2020, NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications, Signal Transduction and Targeted Therapy, 5(1): 231. https://doi.org/10.1038/s41392-020-00326-0 Kotsias F., Hoffmann E., Amigorena S., and Savina A., 2013, Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells, Antioxidants and Redox Signaling, 18(6): 714-729. https://doi.org/10.1089/ars.2012.4557 Lee S., Koh H., Park D., Song B., Huh T., and Park J., 2002, Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells, Free radical Biology and Medicine, 32(11): 1185-1196. https://doi.org/10.1016/S0891-5849(02)00815-8 León-Lara X., Rodríguez-D’Cid R., Rioja-Valencia R., Ayala-Alvirde A., Aliaga-Taipe I., Espinosa-Padilla S., and Blancas-Galicia L., 2021, Clinical and molecular inflammatory alterations in chronic granulomatous disease, Revista alergia Mexico, 67(4): 370-380. https://doi.org/10.29262/ram.v67i4.784 Liu X., Zhang Y., Li Z., Olszewski K., and Gan B., 2020, NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes and Diseases, 8: 731-745. https://doi.org/10.1016/j.gendis.2020.11.010 Maraldi T., Angeloni C., Prata C., and Hrelia S., 2021, NADPH oxidases: redox regulators of stem cell fate and function, Antioxidants, 10(6): 973. https://doi.org/10.3390/antiox10060973 Mcphail L., Shirley P., Clayton C., and Snyderman R., 1985, Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. Evidence for a soluble cofactor, The Journal of Clinical Investigation, 75(5): 1735-1739. https://doi.org/10.1172/JCI111884

RkJQdWJsaXNoZXIy MjQ4ODYzNA==