JEB_2025v16n1

Journal of Energy Bioscience 2025, Vol.16, No.1, 21-30 http://bioscipublisher.com/index.php/jeb 29 Fontecilla-Camps J., 2022, The complex roles of adenosine triphosphate in bioenergetics, ChemBioChem, 23(10): e202200064. https://doi.org/10.1002/cbic.202200064 Galluzzi L., Kepp O., Trojel-Hansen C., and Kroemer G., 2012, Mitochondrial control of cellular life, stress, and death, Circulation Research, 111: 1198-1207. https://doi.org/10.1161/CIRCRESAHA.112.268946 Garcia-Bermudez J., Sánchez-Aragó M., Soldevilla B., Arco A., Nuevo-Tapioles C., and Cuezva J., 2015, PKA phosphorylates the ATPase inhibitory factor 1 and inactivates its capacity to bind and inhibit the mitochondrial H(+)-ATP synthase, Cell Reports, 12(12): 2143-2155. https://doi.org/10.1016/j.celrep.2015.08.052 Glancy B., and Balaban R., 2012, Role of mitochondrial Ca2+ in the regulation of cellular energetics, Biochemistry, 51(14): 2959-2973. https://doi.org/10.1021/bi2018909 Hardie D., 2018, Keeping the home fires burning†: AMP-activated protein kinase, Journal of the Royal Society Interface, 15: 20170774. https://doi.org/10.1098/rsif.2017.0774 Herzig S., and Shaw R., 2017, AMPK: guardian of metabolism and mitochondrial homeostasis, Nature Reviews Molecular Cell Biology, 19: 121-135. https://doi.org/10.1038/nrm.2017.95 Hill S., and Remmen H., 2014, Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging, Redox Biology, 2: 936-944. https://doi.org/10.1016/j.redox.2014.07.005 Igamberdiev A., and Bykova N., 2022, Mitochondria in photosynthetic cells: coordinating redox control and energy balance, Plant Physiology, 191: 2104-2119. https://doi.org/10.1093/plphys/kiac541 Ji W., Tang X., Du W., Lu Y., Wang N., Wu Q., Wei W., Liu J., Yu H., Ma B., Li L., and Huang W., 2021, Optical/electrochemical methods for detecting mitochondrial energy metabolism, Chemical Society Reviews, 51: 71-127. https://doi.org/10.1039/d0cs01610a Johnson J., and Ogbi M., 2011, Targeting the F1Fo ATP synthase: modulation of the body's powerhouse and its implications for human disease, Current Medicinal Chemistry, 18(30): 4684-4714. https://doi.org/10.2174/092986711797379177 Jourdain A., Begg B., Mick E., Shah H., Calvo S., Skinner O., Sharma R., Blue S., Yeo G., Burge C., and Mootha V., 2021, Loss of LUC7L2 and U1 snRNP subunits shifts energy metabolism from glycolysis to OXPHOS, Molecular Cell, 81(9): 1905-1919. https://doi.org/10.1016/j.molcel.2021.02.033 Kadenbach B., 2020, Complex IV- the regulatory center of mitochondrial oxidative phosphorylation, Mitochondrion, 58: 296-302. https://doi.org/10.1016/j.mito.2020.10.004 Karwi Q., Jörg A., and Lopaschuk G., 2019, Allosteric, transcriptional and post-translational control of mitochondrial energy metabolism, The Biochemical Journal, 476(12): 1695-1712. https://doi.org/10.1042/BCJ20180617 Kierans S., and Taylor C., 2020, Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology, The Journal of Physiology, 599(1): 23-37. https://doi.org/10.1113/JP280572 Kumar M., Brocorens P., Tonnelé C., Beljonne D., Surin M., and George S.J., 2014, A dynamic supramolecular polymer with stimuli-responsive handedness for in situ probing of enzymatic ATP hydrolysis, Nature Communications, 5(1): 5793. Ley-Ngardigal S., and Bertolin G., 2021, Approaches to monitor ATP levels in living cells: where do we stand? The FEBS Journal, 289(24): 7940-7969. https://doi.org/10.1111/febs.16169 Lippe G., Coluccino G., Zancani M., Baratta W., and Crusiz P., 2019, Mitochondrial F-ATP synthase and its transition into an energy-dissipating molecular machine, Oxidative Medicine and Cellular Longevity, 1-10. https://doi.org/10.1155/2019/8743257 Matos A., Oakhill J., Moreira J., Loh K., Galic S., and Scott J., 2019, Allosteric regulation of AMP-activated protein kinase by adenylate nucleotides and small-molecule drugs, Biochemical Society Transactions, 47(2): 733-741. https://doi.org/10.1042/BST20180625 Mendelsohn B., Bennett N., Darch M., Yu K., Nguyen M., Pucciarelli D., Nelson M., Horlbeck M., Gilbert L., Hyun W., Kampmann M., Nakamura J., and Nakamura K., 2018, A high-throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure, PLoS Biology, 16(8): e2004624. https://doi.org/10.1371/journal.pbio.2004624 Mnatsakanyan N., and Jonas E., 2020, ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration, Journal of Molecular and Cellular Cardiology, 144: 109-118. https://doi.org/10.1016/j.yjmcc.2020.05.013 Ramdani G., and Langsley G., 2014, ATP, an extracellular signaling molecule in red blood cells: a messenger for malaria? Biomedical Journal, 37: 284-292. https://doi.org/10.4103/2319-4170.132910 Rigoulet M., Rigoulet M., Bouchez C., Bouchez C., Paumard P., Paumard P., Ransac S., Ransac S., Cuvellier S., Cuvellier S., Duvezin-Caubet S., Duvezin-Caubet S., Mazat J., Mazat J., Devin A., and Devin A., 2020, Cell energy metabolism: an update, Biochimica Et Biophysica Acta. Bioenergetics, 1861(11): 148276. https://doi.org/10.1016/j.bbabio.2020.148276

RkJQdWJsaXNoZXIy MjQ4ODYzNA==