JEB_2025v16n1

Journal of Energy Bioscience 2025, Vol.16, No.1, 13-20 http://bioscipublisher.com/index.php/jeb 19 Chen M., Liu P., An R., He X., Zhao P., Huang D., and Yang X., 2025, Sugarcane pan-transcriptome identifying a master gene ScHCT regulating lignin and sugar traits, Journal of Agricultural and Food Chemistry, 73(2): 1739-1755. https://doi.org/10.1021/acs.jafc.4c10101 Cursi D.E., Castillo R.O., Tarumoto Y., Umeda M., Tippayawat A., Ponragdee W., Racedo J., Perera M.F., Hoffmann H.P., and Carneiro M.S., 2022, Origin, genetic diversity, conservation, and traditional and molecular breeding approaches in sugarcane, In: Priyadarshan P., and Jain S.M. (eds.), Cash crops, Springer, Cham, Switzerland, pp.83-116. https://doi.org/10.1007/978-3-030-74926-2_4 Evans L., Hlongwane T., Joshi S., and Pachón D., 2019, The sugarcane mitochondrial genome: assembly, phylogenetics and transcriptomics, PeerJ, 7: e7558. https://doi.org/10.7717/peerj.7558 Garsmeur O., Droc G., Antonise R., Grimwood J., Potier B., Aitken K., Jenkins J., Martin G., Charron C., Hervouet C., Costet L., Yahiaoui N., Healey A., Sims D., Cherukuri Y., Sreedasyam A., Kilian A., Chan A., Van Sluys M., Swaminathan K., Town C., Bergès H., Simmons B., Glaszmann J., Van Der Vossen E., Henry R., Schmutz J., and D'Hont A., 2018, A mosaic monoploid reference sequence for the highly complex genome of sugarcane, Nature Communications, 9: 2638. https://doi.org/10.1038/s41467-018-05051-5 Grivet L., and Arruda P., 2002, Sugarcane genomics: depicting the complex genome of an important tropical crop, Current Opinion in Plant Biology, 5(2): 122-127. https://doi.org/10.1016/S1369-5266(02)00234-0 Guo T.X., 2024, Sustainability in sugarcane processing: integrating environmental and economic perspectives, Field Crop, 7(1): 37-44. Hayes B., Wei X., Joyce P., Atkin F., Deomano E., Yue J., Nguyen L., Ross E., Cavallaro T., Aitken K., and Voss-Fels K., 2021, Accuracy of genomic prediction of complex traits in sugarcane, Theoretical and Applied Genetics, 134: 1455-1462. https://doi.org/10.1007/s00122-021-03782-6 Jackson P., Hale A., Bonnett G., and Lakshmanan P., 2014, Sugarcane, In: Pratap A., and Kumar J. (eds.), Alien gene transfer in crop plants, volume 2, Springer, New York, USA, pp.317-345. https://doi.org/10.1007/978-1-4614-9572-7_14 Jannoo N., Grivet L., Chantret N., Garsmeur O., Glaszmann J., Arruda P., and D'Hont A., 2007, Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome, The Plant Journal, 50(4): 574-585. https://doi.org/10.1111/J.1365-313X.2007.03082.X Li X., Chen X., Fang J., Feng X., Zhang X., Lin H., Chen W., Zhang N., He H., Huang Z., Xue X., Li Y., Fan L., Lai R., Huo Z., Cui M., Deng G., Zaid C., Su Y., Zhang J., Cai W., and Qi Y., 2024, Whole-genome sequencing of a worldwide collection of sugarcane cultivars (Saccharumspp.) reveals the genetic basis of cultivar improvement, The Plant Journal, 119(5): 2151-2167. https://doi.org/10.1111/tpj.16861 Mahadevaiah C., Appunu C., Aitken K., Suresha G., Vignesh P., Swamy H., Valarmathi R., Hemaprabha G., Alagarasan G., and Ram B., 2021, Genomic selection in sugarcane: current status and future prospects, Frontiers in Plant Science, 12: 708233. https://doi.org/10.3389/fpls.2021.708233 Medeiros C., Balsalobre T., and Carneiro M., 2020, Molecular diversity and genetic structure of Saccharumcomplex accessions, PLoS One, 15(5): e0233211. https://doi.org/10.1371/journal.pone.0233211 Meng Z., Han J., Lin Y., Zhao Y., Lin Q., Ma X., Wang J., Zhang M., Zhang L., Yang Q., and Wang K., 2019, Characterization of a Saccharum spontaneumwith a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum, Theoretical and Applied Genetics, 133: 187-199. https://doi.org/10.1007/s00122-019-03450-w Ming R., Wang Y., Draye X., Moore P., Irvine J., and Paterson A., 2002, Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane, Theoretical and Applied Genetics, 105: 332-345. https://doi.org/10.1007/s00122-001-0861-5 Ngaklunchon R., Jongrungklang N., Ukoskit K., Kimbeng C., and Songsri P., 2023, Analysis of sugarcane x Saccharum spontaneum progeny for sugar and biomass traits, Agronomy Journal, 116(1): 18-35. https://doi.org/10.1002/agj2.21502 Pompidor N., Charron C., Hervouet C., Bocs S., Droc G., Rivallan R., Manez A., Mitros T., Swaminathan K., Glaszmann J.C., Garsmeur O., and D’Hont A., 2021, Three founding ancestral genomes involved in the origin of sugarcane, Annals of Botany, 127(6): 827-840. https://doi.org/10.1093/aob/mcab008 Rakesh G., Reddy G., Dinesh A., Swapna N., Saicharan M., Naik B., and Kumar M., 2023, Genetic studies in advanced sugarcane mid-late clones through yield and quality traits, International Journal of Environment and Climate Change, 13(10): 4535-4542. Ren Y., Liao S., and Xu Y., 2023, An update on sugar allocation and accumulation in fruits, Plant Physiology, 193(2): 888-899. https://doi.org/10.1093/plphys/kiad294 Sun L., Wang J., Lian L., Song J., Du X., Liu W., Zhao W., Yang L., Li C., Qin Y., and Yang R., 2022, Systematic analysis of the sugar accumulation mechanism in sucrose- and hexose- accumulating cherry tomato fruits, BMC Plant Biology, 22: 303. https://doi.org/10.1186/s12870-022-03685-8 Thirugnanasambandam P., Hoang N., and Henry R., 2018, The challenge of analyzing the sugarcane genome, Frontiers in Plant Science, 9: 616. https://doi.org/10.3389/fpls.2018.00616

RkJQdWJsaXNoZXIy MjQ4ODYzNA==