JEB_2024v15n6

Journal of Energy Bioscience 2024, Vol.15, No.6, 368-377 http://bioscipublisher.com/index.php/jeb 376 Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abbadi A., and Leckband G., 2011, Rapeseed breeding for oil content, quality, and sustainability, European Journal of Lipid Science and Technology, 113: 1198-1206. https://doi.org/10.1002/EJLT.201100063 Ali E., and Zhang K., 2023, CRISPR-mediated technology for seed oil improvement in rapeseed: challenges and future perspectives, Frontiers in Plant Science, 14: 1086847. https://doi.org/10.3389/fpls.2023.1086847 Almasi S., Ghobadian B., Najafi G., Yusaf T., Soufi M., and Hoseini S., 2019, Optimization of an ultrasonic-assisted biodiesel production process from one genotype of rapeseed (TERI (OE) R-983) as a novel feedstock using response surface methodology, Energies, 12(14): 2656. https://doi.org/10.3390/EN12142656 Azócar L., Ciudad G., Heipieper H., Muñoz R., and Navia R., 2010, Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock, Journal of Bioscience and Bioengineering, 109(6): 609-614. https://doi.org/10.1016/j.jbiosc.2009.12.001 Das S., Das A., Idapuganti R., Layek J., Thakuria D., Sarkar D., Bhupenchandra I., Lal R., Chowdhury S., Babu S., and Debbarma K., 2023, Liming and micronutrient application improves soil properties and productivity of the groundnut-rapeseed cropping system in an acidic Inceptisol of India's eastern Himalayas, Land Degradation & Development, 34: 3681-3699. https://doi.org/10.1002/ldr.4713 Duren I., Voinov A., Arodudu O., and Firrisa M., 2015, Where to produce rapeseed biodiesel and why? mapping European rapeseed energy efficiencym Renewable Energy, 74: 49-59. https://doi.org/10.1016/J.RENENE.2014.07.016 Esmaeilpour-Troujeni M., Rohani A., and Khojastehpour M., 2021, Optimization of rapeseed production using exergy analysis methodology, Sustainable Energy Technologies and Assessments, 43: 100959. https://doi.org/10.1016/j.seta.2020.100959 Feng J., Hussain H., Hussain S., Shi C., Cholidah L., Men S., Ke J., and Wang L., 2020, Optimum water and fertilizer management for better growth and resource use efficiency of rapeseed in rainy and drought seasons, Sustainability, 12(2): 703. https://doi.org/10.3390/su12020703 Ganev E., Ivanov B., Vaklieva-Bancheva N., Kirilova E., and Dzhelil Y., 2021, A multi-objective approach toward optimal design of sustainable integrated biodiesel/diesel supply chain based on first- and second-generation feedstock with solid waste use, Energies, 14(8): 2261. https://doi.org/10.3390/EN14082261 Herrmann I., Jørgensen A., Bruun S., and Hauschild M., 2013, Potential for optimized production and use of rapeseed biodiesel. Based on a comprehensive real-time LCA case study in Denmark with multiple pathways, The International Journal of Life Cycle Assessment, 18: 418-430. https://doi.org/10.1007/s11367-012-0486-8 Jin Z., Chen C., Chen X., Hopkins I., Zhang X., Han Z., Jiang F., and Billy G., 2019, The crucial factors of soil fertility and rapeseed yield - a five year field trial with biochar addition in upland red soil, China, The Science of the Total Environment, 649: 1467-1480. https://doi.org/10.1016/j.scitotenv.2018.08.412 Karunarathna N., Wang H., Harloff H., Jiang L., and Jung C., 2020, Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes, Plant Biotechnology Journal, 18: 2251-2266. https://doi.org/10.1111/pbi.13381 Liu H., Lin B., Ren Y., Hao P., Huang L., Xue B., Jiang L., Zhu Y., and Hua S., 2022, CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed (Brassica napus L.), Frontiers in Plant Science, 13: 1034215. https://doi.org/10.3389/fpls.2022.1034215 Lovasz A., Sabău N., Borza I., and Brejea R., 2023, Production and quality of Biodiesel under the Influence of a rapeseed fertilization system, Energies, 16(9): 3728. https://doi.org/10.3390/en16093728 Liu J., Hua W., Hu Z.Y., Yang H.L., Zhang L., Li R.J., Deng L.B., Sun X.C., Wang X.F., and Wang H.Z., 2015, Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed, Proc. Natl. Acad. Sci. U. S. A., 112(37): E5123-E5132. https://doi.org/10.1073/pnas.1502160112 Malça J., Coelho A., and Freire F., 2014, Environmental life-cycle assessment of rapeseed-based biodiesel: alternative cultivation systems and locations, Applied Energy, 114: 837-844. https://doi.org/10.1016/J.APENERGY.2013.06.048 Rashid U., and Anwar F., 2008, Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil, Fuel, 87: 265-273. https://doi.org/10.1016/J.FUEL.2007.05.003

RkJQdWJsaXNoZXIy MjQ4ODYzNA==