JEB_2024v15n6

Journal of Energy Bioscience 2024, Vol.15, No.6, 349-357 http://bioscipublisher.com/index.php/jeb 356 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Agegnehu G., Bass A., Nelson P., and Bird M., 2016, Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil, The Science of the Total Environment, 543(Pt A): 295-306. https://doi.org/10.1016/j.scitotenv.2015.11.054 Andorf C., Beavis W., Hufford M., Smith S., Suza W., Wang K., Woodhouse M., Yu J., and Lübberstedt T., 2019, Technological advances in maize breeding: past, present and future, Theoretical and Applied Genetics, 132: 817-849. https://doi.org/10.1007/s00122-019-03306-3 Beyene Y., Gowda M., Pérez-Rodríguez P., Olsen M., Robbins K., Burgueño J., Prasanna B., and Crossa J., 2021, Application of genomic selection at the early stage of breeding pipeline in tropical maize, Frontiers in Plant Science, 12: 685488. https://doi.org/10.3389/fpls.2021.685488 Beyene Y., Semagn K., Crossa J., Mugo S., Atlin G., Tarekegne A., Meisel B., Sehabiague P., Vivek B., Oikeh S., Alvarado G., Machida L., Olsen M., Prasanna B., and Bänziger M., 2016, Improving maize grain yield under drought stress and non-stress environments in sub-saharan Africa using marker-assisted recurrent selection, Crop Science, 56: 344-353. https://doi.org/10.2135/CROPSCI2015.02.0135 Byrt C., Grof C., and Furbank, R., 2011, C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective, Journal of Integrative Plant Biology, 53(2): 120-135. https://doi.org/10.1111/j.1744-7909.2010.01023.x Cabrera-Bosquet L., Crossa J., Von Zitzewitz J., Serret M., and Araus J., 2012, High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge, Journal of Integrative Plant Biology, 54(5): 312-320. https://doi.org/10.1111/j.1744-7909.2012.01116.x Choudhary M., Singh A., Gupta M., and Rakshit S., 2019, Enabling technologies for utilization of maize as a bioenergy feedstock, Biofuels, 14(2): 402-416. https://doi.org/10.1002/bbb.2060 Cooper M., Gho C., Leafgren R., Tang T., and Messina C., 2014, Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product, Journal of Experimental Botany, 65(21): 6191-6204. https://doi.org/10.1093/jxb/eru064 Guan Y.X., Wang B., Feng Y., and Li P., 2015, Development and application of marker-assisted reverse breeding using hybrid maize germplasm, Journal of Integrative Agriculture, 14: 2538-2546. https://doi.org/10.1016/S2095-3119(14)61004-2 Infante P., Moore K., Hurburgh C., Scott P., Archontoulis S., Lenssen A., and Fei S., 2018, Biomass production and composition of temperate and tropical maize in central iowa, Agronomy, 8(6): 88. https://doi.org/10.3390/AGRONOMY8060088 Kemmann B., Wöhl L., Fuß R., Schrader S., Well R., and Ruf T., 2021, N2 and N2O mitigation potential of replacing maize with the perennial biomass crop Silphium perfoliatum—An incubation study, GCB Bioenergy, 13: 1649-1665. https://doi.org/10.1111/gcbb.12879 Liu D., Zhang W., Wang X., Guo Y., and Chen X., 2021a, Greenhouse gas emissions and mitigation potential of hybrid maize seed production in northwestern China, Environmental Science and Pollution Research, 29: 17787-17798. https://doi.org/10.1007/s11356-021-16990-w Liu Z., Ying H., Chen M., Bai J., Xue Y., Yin Y., Batchelor W., Yang Y., Bai Z., Du M., Guo Y., Zhang Q., Cui Z., Zhang F., and Dou Z., 2021b, Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints, Nature Food, 2: 426-433. https://doi.org/10.1038/s43016-021-00300-1 Ma C., Zhan W., Li W., Zhang M., Lu M., Xia X., Bai Q., Wang X., Yan P., and Xi Z., 2019, The analysis of functional genes in maize molecular breeding, Molecular Breeding, 39: 1-20. https://doi.org/10.1007/s11032-018-0900-4 Maitra S., and Singh V., 2021, Invited review on ‘maize in the 21st century’ Emerging trends of maize biorefineries in the 21st century: scientific and technological advancements in biofuel and bio-sustainable market, Journal of Cereal Science, 101: 103272. https://doi.org/10.1016/J.JCS.2021.103272 Moreira M., Seabra J., Lynd L., Arantes S., Cunha M., and Guilhoto J., 2020, Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil, Nature Sustainability, 3: 209-216. https://doi.org/10.1038/s41893-019-0456-2 Munaiz E., Albrecht K., and Ordás B., 2021, Genetic diversity for dual use maize: grain and second-generation biofuel, Agronomy, 11(2): 230. https://doi.org/10.3390/AGRONOMY11020230

RkJQdWJsaXNoZXIy MjQ4ODYzNA==