Journal of Energy Bioscience 2024, Vol.15, No.5, 326-336 http://bioscipublisher.com/index.php/jeb 335 Larnaudie V., Ferrari M., and Lareo C., 2019, Techno-economic analysis of a liquid hot water pretreated switchgrass biorefinery: Effect of solids loading and enzyme dosage on enzymatic hydrolysis, Biomass and Bioenergy, 130: 105394. https://doi.org/10.1016/j.biombioe.2019.105394 Larnaudie V., Ferrari M., and Lareo C., 2021, Life cycle assessment of ethanol produced in a biorefinery from liquid hot water pretreated switchgrass, Renewable Energy, 176: 606-616. https://doi.org/10.1016/J.RENENE.2021.05.094 Laser M., Jin H., Jayawardhana K., and Lynd L., 2009, Coproduction of ethanol and power from switchgrass, Biofuels, 3(2): 195-218. https://doi.org/10.1002/BBB.133 Li C., Knierim B., Manisseri C., Arora R., Scheller H., Auer M., Vogel K., Simmons B., and Singh S., 2010, Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification, Bioresource Technology, 101(13): 4900-4906. https://doi.org/10.1016/j.biortech.2009.10.066 Li X., Petipas R., Antoch A., Liu Y., Stel H., Bell-Dereske L., Smercina D., Bekkering C., Evans S., Tiemann L., and Friesen M., 2022, Switchgrass cropping systems affect soil carbon and nitrogen and microbial diversity and activity on marginal lands, GCB Bioenergy, 14: 918-940. https://doi.org/10.1111/gcbb.12949 Luque L., Oudenhoven S., Westerhof R., Rossum G., Berruti F., Kersten S., and Rehmann L., 2016, Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach, Biotechnology for Biofuels, 9: 242. https://doi.org/10.1186/s13068-016-0661-4 Martín M., and Grossmann I., 2012, Energy optimization of bioethanol production via hydrolysis of switchgrass, Aiche Journal, 58: 1538-1549. https://doi.org/10.1002/AIC.12735 Mazarei M., Baxter H., Srivastava A., Li G., Xie H., Dumitrache A., Rodriguez M., Natzke J., Zhang J., Turner G., Sykes R., Davis M., Udvardi M., Wang Z., Davison B., Blancaflor E., Tang Y., and Stewart C., 2020, Silencing folylpolyglutamate synthetase1 (FPGS1) in switchgrass (Panicum virgatum L.) improves lignocellulosic biofuel production, Frontiers in Plant Science, 11: 843. https://doi.org/10.3389/fpls.2020.00843 McLaughlin S., and Kszos L., 2005, Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States, Biomass & Bioenergy, 28: 515-535. https://doi.org/10.1016/J.BIOMBIOE.2004.05.006 Mitchell R., Vogel K., and Sarath G., 2008, Managing and enhancing switchgrass as a bioenergy feedstock, Biofuels, 2(6): 530-539. https://doi.org/10.1002/BBB.106 Norkevičienė E., Lemežienė N., Cesevičienė J., and Butkutė B., 2016, Switchgrass (Panicum virgatumL.) from North Dakota—a new bioenergy crop for the nemoral zone of Europe, Communications in Soil Science and Plant Analysis, 47: 64-74. https://doi.org/10.1080/00103624.2016.1232098 Schmer M., Vogel K., Mitchell R., and Perrin R., 2008, Net energy of cellulosic ethanol from switchgrass, Proceedings of the National Academy of Sciences, 105: 464-469. https://doi.org/10.1073/pnas.0704767105 Schmer M., Vogel K., Mitchell R., Dien B., Jung H., and Casler M., 2012, Temporal and spatial variation in switchgrass biomass composition and theoretical ethanol yield,Agronomy Journal, 104: 54-64. https://doi.org/10.2134/AGRONJ2011.0195 Sesmero J., Trull N., and Gramig B., 2021, Economic viability and carbon footprint of switchgrass for cellulosic biofuels: insights from a spatial multi‐feedstock procurement landscape analysis, GCB Bioenergy, 13(7): 1054-1070.. https://doi.org/10.1111/gcbb.12843 Shen H., Poovaiah C., Ziebell A., Tschaplinski T., Pattathil S., Gjersing E., Engle N., Katahira R., Pu Y., Sykes R., Chen F., Ragauskas A., Mielenz J., Hahn M., Davis M., Stewart C., and Dixon R., 2013, Enhanced characteristics of genetically modified switchgrass (Panicum virgatumL.) for high biofuel production, Biotechnology for Biofuels, 6: 71. https://doi.org/10.1186/1754-6834-6-71 Smullen E., Finnan J., Dowling D., and Mulcahy P., 2017, Bioconversion of switchgrass: identification of a leading pretreatment option based on yield, cost and environmental impact, Renewable Energy, 111: 638-645. https://doi.org/10.1016/J.RENENE.2017.04.059 Sundar S., Bergey N., Salamanca-cardona L., Stipanovic A., and Driscoll M., 2014, Electron beam pretreatment of switchgrass to enhance enzymatic hydrolysis to produce sugars for biofuels, Carbohydrate Polymers, 100: 195-201. https://doi.org/10.1016/j.carbpol.2013.04.103 Tao L., Aden A., Elander R., Pallapolu V., Lee Y., Garlock R., Balan V., Dale B., Kim Y., Mosier N., Ladisch M., Falls M., Holtzapple M., Sierra R., Shi J., Ebrik M., Redmond T., Yang B., Wyman C., Hames B., Thomas S., and Warner R., 2011, Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass, Bioresource Technology, 102(24): 11105-11114. https://doi.org/10.1016/j.biortech.2011.07.051 Wang F., Shi D., Han J., Zhang G., Jiang X., Yang M., Wu Z., Fu C., Li Z., Xian M., and Zhang H., 2020, Comparative study on pretreatment processes for different utilization purposes of switchgrass, ACS Omega, 5: 21999-22007. https://doi.org/10.1021/acsomega.0c01047
RkJQdWJsaXNoZXIy MjQ4ODYzMg==