Journal of Energy Bioscience 2024, Vol.15, No.5, 314-325 http://bioscipublisher.com/index.php/jeb 323 Chung Y., Tannia D., and Kwon Y., 2018, Glucose biofuel cells using bi-enzyme catalysts including glucose oxidase, horseradish peroxidase and terephthalaldehyde crosslinker, Chemical Engineering Journal, 334: 1085-1092. https://doi.org/10.1016/J.CEJ.2017.10.121 Cooney M., Svoboda V., Lau C., Martin G., and Minteer S., 2008, Enzyme catalysed biofuel cells, Energy and Environmental Science, 1: 320-337. https://doi.org/10.1039/B809009B Cosnier S., Gross A., Goff A., and Holzinger M. 2016, Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations, Journal of Power Sources, 325: 252-263. https://doi.org/10.1016/J.JPOWSOUR.2016.05.133 Deng L., Wang F., Chen H., Shang L., Wang L., Wang T., and Dong S., 2008, A biofuel cell with enhanced performance by multilayer biocatalyst immobilized on highly ordered macroporous electrode, Biosensors & Bioelectronics, 24(2): 329-333. https://doi.org/10.1016/j.bios.2008.04.006 Gross A., Chen X., Giroud F., Abreu C., Goff A., Holzinger M., and Cosnier S., 2017, A high power buckypaper biofuel cell: exploiting 1,10-Phenanthroline-5,6-dione with FAD-dependent dehydrogenase for catalytically-powerful glucose oxidation, ACS Catalysis, 7: 4408-4416. https://doi.org/10.1021/ACSCATAL.7B00738 Hou C., Yang D., Liang B., and Liu A., 2014, Enhanced performance of a glucose/O(2) biofuel cell assembled with laccase-covalently immobilized three-dimensional macroporous gold film-based biocathode and bacterial surface displayed glucose dehydrogenase-based bioanode, Analytical Chemistry, 86(12): 6057-6063. https://doi.org/10.1021/ac501203n Huang J., Zhao P., Jin X., Wang Y., Yuan H., and Zhu X., 2020, Enzymatic biofuel cells based on protein engineering: recent advances and future prospects, Biomaterials Science, 8: 5230-5240. https://doi.org/10.1039/d0bm00925c Huang X., Zhang L., Zhang Z., Guo S., Shang H., Li Y., and Liu J., 2019, Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes, Biosensors & Bioelectronics, 124-125: 40-52. https://doi.org/10.1016/j.bios.2018.09.086 Hyun K., Han S., Koh W., and Kwon Y., 2015, Fabrication of biofuel cell containing enzyme catalyst immobilized by layer-by-layer method, Journal of Power Sources, 286: 197-203. https://doi.org/10.1016/J.JPOWSOUR.2015.03.136 Jayapiriya U., and Goel S., 2020, Surface modified 3D printed carbon bioelectrodes for glucose/O2 enzymatic biofuel cell: Comparison and optimization, Sustainable Energy Technologies and Assessments, 42: 100811. https://doi.org/10.1016/J.SETA.2020.100811 Jeon S., Lee J., Lee J., Kang S., Park C., and Kim S., 2008, Optimization of cell conditions for enzymatic fuel cell using statistical analysis, Journal of Industrial and Engineering Chemistry, 14: 338-343. https://doi.org/10.1016/J.JIEC.2008.01.006 Kamitaka Y., Tsujimura S., Setoyama N., Kajino T., and Kano K., 2007, Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis, Physical Chemistry Chemical Physics: PCCP, 9(15): 1793-1801. https://doi.org/10.1039/B617650J Kar P., Wen H., Li H., Minteer S., and Barton S., 2011, Simulation of multistep enzyme-catalyzed methanol oxidation in biofuel cells, Journal of The Electrochemical Society, 158(5): B580. https://doi.org/10.1149/1.3561690 Li X., Lv P., Yao Y., Feng Q., Mensah A., Li D., and Wei Q., 2020, A novel single-enzymatic biofuel cell based on highly flexible conductive bacterial cellulose electrode utilizing pollutants as fuel, Chemical Engineering Journal, 379(1): 122316. https://doi.org/10.1016/J.CEJ.2019.122316 Liang K.W., 2024, Application and economic analysis of pyrolysis technology for industrial waste in biofuel production, Journal of Energy Bioscience, 15(1): 48-59. https://doi.org/10.5376/jeb.2024.15.0006 Liu S., Bilal M., Rizwan K., Gul I., Rasheed T., and Iqbal H., 2021, Smart chemistry of enzyme immobilization using various support matrices - a review, International Journal of Biological Macromolecules, 190(1): 396-408. https://doi.org/10.1016/j.ijbiomac.2021.09.006 Madavi T., Chauhan S., Keshri A., Alavilli H., Choi K., and Pamidimarri S., 2021, Whole-cell biocatalysis: advancements toward the biosynthesis of fuels, Biofuels, 16(3): 859-876. https://doi.org/10.1002/bbb.2331 Mateo C., Palomo J., Fernandez-Lorente G., Guisán J., and Fernández-Lafuente R., 2007, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme and Microbial Technology, 40: 1451-1463. https://doi.org/10.1016/J.ENZMICTEC.2007.01.018 Meredith M., and Minteer S., 2012, Biofuel cells: enhanced enzymatic bioelectrocatalysis, Annual Review of Analytical Chemistry, 5: 157-179. https://doi.org/10.1146/annurev-anchem-062011-143049
RkJQdWJsaXNoZXIy MjQ4ODYzMg==