JEB_2024v15n5

Journal of Energy Bioscience 2024, Vol.15, No.5, 301-313 http://bioscipublisher.com/index.php/jeb 313 Tiang M., Hanipa M., Abdul P., Jahim J., Mahmod S., Takriff M., Lay C., Reungsang A., and Wu S., 2020, Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: an overview, International Journal of Hydrogen Energy, 45: 13211-13230. https://doi.org/10.1016/j.ijhydene.2020.03.033 Vargas J., Kava V., Balmant W., Mariano A., and Ordonez J., 2016, Modeling microalgae derived hydrogen production enhancement via genetic modification, International Journal of Hydrogen Energy, 41: 8101-8110. https://doi.org/10.1016/J.IJHYDENE.2015.12.217 Villacreses-Freire D., Ketzer F., and Rösch C., 2021, Advanced metabolic engineering approaches and renewable energy to improve environmental benefits of algal biofuels: LCA of large-scale biobutanol production with cyanobacteria synechocystis PCC6803, BioEnergy Research, 15: 1515-1530. https://doi.org/10.1007/s12155-021-10323-y Wang J., and Yin Y., 2018, Fermentative hydrogen production using pretreated microalgal biomass as feedstock, Microbial Cell Factories, 17: 1-16. https://doi.org/10.1186/s12934-018-0871-5 Williams P., and Laurens L., 2010, Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics, Energy and Environmental Science, 3: 554-590. https://doi.org/10.1039/B924978H Zaimes G., and Khanna V., 2013, Microalgal biomass production pathways: evaluation of life cycle environmental impacts, Biotechnology for Biofuels, 6: 88. https://doi.org/10.1186/1754-6834-6-88 Zhang K., Zhang F., and Wu Y., 2021, Emerging technologies for conversion of sustainable algal biomass into value-added products: a state-of-the-art review, The Science of the Total Environment, 784: 147024. https://doi.org/10.1016/j.scitotenv.2021.147024

RkJQdWJsaXNoZXIy MjQ4ODYzMg==