JEB_2024v15n5

Journal of Energy Bioscience 2024, Vol.15, No.5, 301-313 http://bioscipublisher.com/index.php/jeb 312 Lu C., Zhang H., Zhang Q., Chu C., Tahir N., Ge X., Jing Y., Hu J., Li Y., Zhang Y., and Zhang T., 2020, An automated control system for pilot-scale biohydrogen production: design, operation and validation, International Journal of Hydrogen Energy, 45: 3795-3806. https://doi.org/10.1016/J.IJHYDENE.2019.04.288 Mathews J., and Wang G., 2009, Metabolic pathway engineering for enhanced biohydrogen production, International Journal of Hydrogen Energy, 34: 7404-7416. https://doi.org/10.1016/J.IJHYDENE.2009.05.078 Mona S., Kumar S., Kumar V., Parveen K., Saini N., Deepak B., and Pugazhendhi A., 2020, Green technology for sustainable biohydrogen production (waste to energy): a review, The Science of the Total Environment, 728: 138481. https://doi.org/10.1016/j.scitotenv.2020.138481 Nagarajan D., Chang J., and Lee D., 2020, Pretreatment of microalgal biomass for efficient biohydrogen production - recent insights and future perspectives, Bioresource Technology, 302: 122871. https://doi.org/10.1016/j.biortech.2020.122871 Nagarajan D., Lee D., Kondo A., and Chang J., 2017, Recent insights into biohydrogen production by microalgae - from biophotolysis to dark fermentation, Bioresource Technology, 227: 373-387. https://doi.org/10.1016/j.biortech.2016.12.104 Negi S., Perrine Z., Friedland N., Kumar A., Tokutsu R., Minagawa J., Berg H., Barry A., Govindjee G., and Sayre R., 2020, Light-regulation of light harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae, The Plant Journal : for Cell and Molecular Biology, 103(2): 584-603. https://doi.org/10.1111/tpj.14751 Nwoba E., Parlevliet D., Laird D., Alameh K., and Moheimani N., 2019, Light management technologies for increasing algal photobioreactor efficiency, Algal Research, 39: 101433. https://doi.org/10.1016/J.ALGAL.2019.101433 Oncel S., Kose A., Faraloni C., Imamoglu E., Elibol M., Torzillo G., and Sukan F., 2015, Biohydrogen production from model microalgae Chlamydomonas reinhardtii: a simulation of environmental conditions for outdoor experiments, International Journal of Hydrogen Energy, 40: 7502-7510. https://doi.org/10.1016/J.IJHYDENE.2014.12.121 Park J., Cheon H., Yoon J., Park H., and Kim S., 2013, Optimization of batch dilute-acid hydrolysis for biohydrogen production from red algal biomass, International Journal of Hydrogen Energy, 38: 6130-6136. https://doi.org/10.1016/J.IJHYDENE.2013.01.050 Pérez-López P., Vree J., Feijóo G., Bosma R., Barbosa M., Moreira M., Wijffels R., Boxtel A., Pérez‐López P., Moreira M., and Kleinegris D., 2017, Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons, Applied Energy, 205: 1151-1164. https://doi.org/10.1016/J.APENERGY.2017.08.102 Qarri A., and Israel Á., 2020, Seasonal biomass production, fermentable saccharification and potential ethanol yields in the marine macroalga Ulva sp. (Chlorophyta), Renewable Energy, 145: 2101-2107. https://doi.org/10.1016/J.RENENE.2019.07.155 Rajesh Banu J., Mohamed Usman T.M., Kavitha S., Yukesh Kannah R., Yogalakshmi K.N., Sivashanmugam P., Bhatnagar A., and Kumar G., 2021, A critical review on limitations and enhancement strategies associated with biohydrogen production, International Journal of Hydrogen Energy, 46(31): 16565-16590. https://doi.org/10.1016/J.IJHYDENE.2021.01.075 Shankaran S., Karuppiah T., and Jeyakumar R., 2022, Chemo-sonic pretreatment approach on marine macroalgae for energy efficient biohydrogen production, Sustainability, 14(19): 12849. https://doi.org/10.3390/su141912849 Sharma A., Ghodke P., Manna S., and Chen W., 2021, Emerging technologies for sustainable production of biohydrogen production from microalgae: a state-of-the-art review of upstream and downstream processes, Bioresource Technology, 342: 126057. https://doi.org/10.1016/j.biortech.2021.126057 Show K., Yan Y., and Lee D., 2019, Biohydrogen production from algae: perspectives, challenges, and prospects, Biofuels from Algae, 325-343. https://doi.org/10.1016/B978-0-444-64192-2.00013-5 Show K., Yan Y., Zong C., Guo N., Chang J., and Lee D., 2019, State of the art and challenges of biohydrogen from microalgae, Bioresource Technology, 289: 121747. https://doi.org/10.1016/j.biortech.2019.121747 Sim Y., Jung J., Baik J., Park J., Kumar G., Banu J., and Kim S., 2021, Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass, Bioresource Technology, 340: 125562. https://doi.org/10.1016/j.biortech.2021.125562 Taelman S., Meester S., Roef L., Michiels M., and Dewulf J., 2013, The environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective, Bioresource Technology, 150: 513-522. https://doi.org/10.1016/j.biortech.2013.08.044

RkJQdWJsaXNoZXIy MjQ4ODYzMg==