Journal of Energy Bioscience 2024, Vol.15, No.5, 289-300 http://bioscipublisher.com/index.php/jeb 298 Banerjee S., Rout S., Banerjee S., Atta A., and Das D., 2019. Fe2O3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: A biorefinery approach, Energy Conversion and Management, 195: 844-853. https://doi.org/10.1016/J.ENCONMAN.2019.05.060 Branco-Vieira M., Mata T., Martins A., Freitas M., and Caetano N., 2020, Economic analysis of microalgae biodiesel production in a small-scale facility, Energy Reports, 6: 325-332. https://doi.org/10.1016/j.egyr.2020.11.156 Çanakçı M., 2007, The potential of restaurant waste lipids as biodiesel feedstocks, Bioresource Technology, 98(1): 183-190. https://doi.org/10.1016/J.BIORTECH.2005.11.022 Carmona-Cabello M., Garcia I., Papadaki A., Tsouko E., Koutinas A., and Dorado M., 2020, Biodiesel production using microbial lipids derived from food waste discarded by catering services, Bioresource Technology, 323: 124597. https://doi.org/10.1016/j.biortech.2020.124597 Chamola R., Khan M., Raj A., Verma M., and Jain S., 2019, Response surface methodology based optimization of in situ transesterification of dry algae with methanol, H2SO4 and NaOH, Fuel, 239(1): 511-520. https://doi.org/10.1016/J.FUEL.2018.11.038 Cheirsilp B., and Louhasakul Y., 2013, Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel, Bioresource Technology, 142: 329-337. https://doi.org/10.1016/j.biortech.2013.05.012 Cheng J., Qiu Y., Huang R., Yang W., Zhou J., and Cen K., 2016, Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst, Bioresource Technology, 221: 344-349. https://doi.org/10.1016/j.biortech.2016.09.064 Dębowski M., Zieliński M., Kazimierowicz J., Kujawska N., and Talbierz S., 2020, Microalgae cultivation technologies as an opportunity for bioenergetic system development—advantages and limitations, Sustainability, 12(23): 9980. https://doi.org/10.3390/su12239980 Demirbaş A., 2010, Use of algae as biofuel sources, Energy Conversion and Management, 51: 2738-2749. https://doi.org/10.1016/J.ENCONMAN.2010.06.010 Goswami R., Mehariya S., Obulisamy P., and Verma P., 2020, Advanced microalgae-based renewable biohydrogen production systems: a review, Bioresource Technology, 320(Pt A): 124301. https://doi.org/10.1016/j.biortech.2020.124301 Ho K., and Chu L., 2018, Characterization of food waste from different sources in Hong Kong, Journal of the Air & Waste Management Association, 69: 277-288. https://doi.org/10.1080/10962247.2018.1526138 Hou Q., Nie C., Pei H., Hu W., Jiang L., and Yang Z., 2016, The effect of algae species on the bioelectricity and biodiesel generation through open-air cathode microbial fuel cell with kitchen waste anaerobically digested effluent as substrate, Bioresource Technology, 218: 902-908. https://doi.org/10.1016/j.biortech.2016.07.035 Im H., Lee H., Park M., Yang J., and Lee J., 2014, Concurrent extraction and reaction for the production of biodiesel from wet microalgae, Bioresource Technology, 152: 534-537. https://doi.org/10.1016/j.biortech.2013.11.023 Jais F., Hassan S., Zamri M., Zulkornain M., and Shamsuddin A., 2023, Biohydrogen production from kitchen organic waste via effective pre-treatment process of dark fermentation, IOP Conference Series: Earth and Environmental Science, 1205(1): 012021. https://doi.org/10.1088/1755-1315/1205/1/012021 Jazzar S., Quesada-Medina J., Olivares-Carrillo P., Marzouki M., Acién-Fernándéz F., Fernández-Sevilla J., Molina-Grima E., and Smaali I., 2015, A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae,. Bioresource Technology, 190: 281-288. https://doi.org/10.1016/j.biortech.2015.04.097 Jeyakumar R., Merrylin J., Usman T., Kannah R., Gunasekaran M., Kim S., and Kumar G., 2020, Impact of pretreatment on food waste for biohydrogen production: a review, International Journal of Hydrogen Energy, 45: 18211-18225. https://doi.org/10.1016/j.ijhydene.2019.09.176 Karim A., Islam M., Mishra P., Muzahid A., Yousuf A., Khan M., and Faizal C., 2021, Yeast and bacteria co-culture-based lipid production through bioremediation of palm oil mill effluent: a statistical optimization, Biomass Conversion and Biorefinery, 13: 2947-2958. https://doi.org/10.1007/s13399-021-01275-6 Kumar M., Kavitha S., Tyagi V., Rajkumar M., Bhatia S., Kumar G., and Jeyakumar R., 2021, Macroalgae-derived biohydrogen production: biorefinery and circular bioeconomy, Biomass Conversion and Biorefinery, 12: 769-791. https://doi.org/10.1007/S13399-020-01187-X Li C., Lesnik K., and Liu H., 2013, Microbial conversion of waste glycerol from biodiesel production into value-added products, Energies, 6: 4739-4768. https://doi.org/10.3390/EN6094739 Li X.W., and Zhou W., 2024, Application and cultivation optimization of marine microalgae in biodiesel production, Journal of Energy Bioscience, 15(3): 171-185. https://doi.org/10.5376/jeb.2024.15.0017
RkJQdWJsaXNoZXIy MjQ4ODYzMg==