JEB_2024v15n5

Journal of Energy Bioscience 2024, Vol.15, No.5, 277-288 http://bioscipublisher.com/index.php/jeb 288 Srivastava R., Shetti N., Reddy K., and Aminabhavi T., 2020, Biofuels, biodiesel and biohydrogen production using bioprocesses, A review, Environmental Chemistry Letters, 18: 1049-1072. https://doi.org/10.1007/s10311-020-00999-7 Taghizadeh-Alisaraei A., Tatari A., Khanali M., and Keshavarzi M., 2022, Potential of biofuels production from wheat straw biomass, current achievements and perspectives: a review, Biofuels, 14: 79-92. https://doi.org/10.1080/17597269.2022.2118779 Tingley J., Low K., Xing X., and Abbott D., 2021, Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues, Biotechnology for Biofuels, 14: 1-19. https://doi.org/10.1186/s13068-020-01869-8 Uzoejinwa B., He X., Wang S., Abomohra A., Hu Y., and Wang Q., 2018, Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide, Energy Conversion and Management, 163: 468-492. https://doi.org/10.1016/J.ENCONMAN.2018.02.004 Whittaker C., McManus M., and Hammond G., 2011, Greenhouse gas reporting for biofuels: a comparison between the RED, RTFO and PAS2050 methodologies, Energy Policy, 39: 5950-5960. https://doi.org/10.1016/J.ENPOL.2011.06.054 Zhao P., Shen Y., Ge S., Chen Z., and Yoshikawa K., 2014, Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment, Applied Energy, 131: 345-367. https://doi.org/10.1016/J.APENERGY.2014.06.038 Zinoviev S., Müller‐Langer F., Das P., Bertero N., Fornasiero P., Kaltschmitt M., Centi G., and Miertus S., 2010, Next-generation biofuels: survey of emerging technologies and sustainability issues, ChemSusChem, 3(10): 1106-1133. https://doi.org/10.1002/cssc.201000052

RkJQdWJsaXNoZXIy MjQ4ODYzMg==