JEB_2024v15n4

Journal of Energy Bioscience 2024, Vol.15, No.4, 267-276 http://bioscipublisher.com/index.php/jeb 275 https://doi.org/10.1016/j.biortech.2013.11.059 Kopka J., Schmidt S., Dethloff F., Pade N., Berendt S., Schottkowski M., Martin N., Duhring U., Kuchmina E., Enke H., Kramer D., Wilde A., Hagemann M., and Friedrich A., 2017, Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002, Biotechnology for Biofuels, 10: 1-21. https://doi.org/10.1186/s13068-017-0741-0 Kracke F., Lai B., Yu S., and Krömer J., 2018, Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - a chance for metabolic engineering, Metabolic Engineering, 45: 109-120. https://doi.org/10.1016/j.ymben.2017.12.003 Mohanrasu K., Rao R., Dinesh G., Zhang K., Muniyasamy S., Pugazhendhi A., Jeyakanthan J., Ponnuchamy K., Govarthanan M., and Arun A., 2021, Production and characterization of biodegradable polyhydroxybutyrate by Micrococcus luteus isolated from marine environment, International Journal of Biological Macromolecules, 186: 125-134. https://doi.org/10.1016/j.ijbiomac.2021.07.029 Niu H., Leak D., Shah N., and Kontoravdi C., 2015, Metabolic characterization and modeling of fermentation process of an engineered Geobacillus thermoglucosidasius strain for bioethanol production with gas stripping, Chemical Engineering Science, 122: 138-149. https://doi.org/10.1016/J.CES.2014.09.004 Osman M., Abo-Shady A., Elshobary M., El-Ghafar M., Hanelt D., and Abomohra A., 2023, Exploring the prospects of fermenting/co-fermenting marine biomass for enhanced bioethanol production, Fermentation, 9(11): 934. https://doi.org/10.3390/fermentation9110934 Raj K., Venayak N., Diep P., Golla S., Yakunin A., and Mahadevan R., 2021, Automation assisted anaerobic phenotyping for metabolic engineering, Microbial Cell Factories, 20: 1-16. https://doi.org/10.1186/s12934-021-01675-3 Ramachandra T., and Hebbale D., 2020, Bioethanol from macroalgae: prospects and challenges, Renewable and Sustainable Energy Reviews, 117: 109479. https://doi.org/10.1016/j.rser.2019.109479 Reisky L., Préchoux A., Zuhlke M., Bäumgen M., Robb C., Gerlach N., Roret T., Stanetty C., Larocque R., Michel G., Song T., Markert S., Unfried F., Mihovilovic M., Trautwein-Schult A., Becher D., Schweder T., Bornscheuer U., and Hehemann J., 2019, A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan, Nature Chemical Biology, 15(8): 803-812. https://doi.org/10.1038/s41589-019-0311-9 Robak K., and Balcerek M., 2018, Review of second generation bioethanol production from residual biomass, Food Technology and Biotechnology, 56(2): 174-187. https://doi.org/10.17113/ftb.56.02.18.5428 Sen P., 2022, Flux balance analysis of metabolic networks for efficient engineering of microbial cell factories, Biotechnology and Genetic Engineering Reviews, 1-34. https://doi.org/10.1080/02648725.2022.2152631 Soliman R., Younis S., El-Gendy N., Mostafa S., El-Temtamy S., and Hashim A., 2018, Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae, Journal of Applied Microbiology, 125(2): 422-440. https://doi.org/10.1111/jam.13886 Songdech P., Ruchala J., Semkiv M., Jensen L., Sibirny A., Ratanakhanokchai K., and Soontorngun N., 2020, Overexpression of transcription factor ZNF1 of glycolysis improves bioethanol productivity under high glucose concentration and enhances acetic acid tolerance of saccharomyces cerevisiae, Biotechnology Journal, 15(7): 1900492. https://doi.org/10.1002/biot.201900492 Sulfahri, Mushlihah S., Husain D., Langford A., and Tassakka A., 2020, Fungal pretreatment as a sustainable and low cost option for bioethanol production from marine algae, Journal of Cleaner Production, 265: 121763. https://doi.org/10.1016/j.jclepro.2020.121763 Takeda H., Yoneyama F., Kawai S., Hashimoto W., and Murata K., 2011, Bioethanol production from marine biomass alginate by metabolically engineered bacteria, Energy and Environmental Science, 4: 2575-2581. https://doi.org/10.1039/C1EE01236C Tang Y., Sapra R., Joyner D., Hazen T., Myers S., Reichmuth D., Blanch H., and Keasling J., 2009, Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain, Biotechnology and Bioengineering, 102(5): 1377-1386. https://doi.org/10.1002/bit.22181 Telussa I., Fransina E., Singerin J., and Taipabu M., 2023, Bioethanol production from tropical marine microalgae ambon bay navicula sp. of the inner ambon bay strain, Indonesian Journal of Chemical Research, 10(3): 136-142. https://doi.org/10.30598//ijcr.2023.10-ivo Turner W., Greetham D., and Du C., 2022, The characterisation of Wickerhamomyces anomalus M15, a highly tolerant yeast for bioethanol production using seaweed derived medium, Frontiers in Bioengineering and Biotechnology, 10: 1028185. https://doi.org/10.3389/fbioe.2022.1028185 Yang M., Li X., Bu C., Wang H., Shi G., Yang X., Hu Y., and Wang X., 2014, Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks, World Journal of Microbiology and Biotechnology, 30: 2871-2883.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==