JEB_2024v15n4

Journal of Energy Bioscience 2024, Vol.15, No.4, 255-266 http://bioscipublisher.com/index.php/jeb 265 Das R., Kiley P., Segal M., Norville J., Yu A., Wang L., Trammell S., Reddick L., Kumar R., Stellacci F., Lebedev N., Schnur J., Bruce B., Zhang S., and Baldo M., 2004, Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices, Nano Letters, 4: 1079-1083. https://doi.org/10.1021/NL049579F Dau H., and Zaharieva I., 2009, Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation, Accounts of Chemical Research, 42(12): 1861-1870. https://doi.org/10.1021/ar900225y Galka P., Santabarbara S., Khuong T.T.H., Degand H., Morsomme P., Jennings R.C., Boekema E.J., and Caffarria S., 2012, Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem ii is a very efficient antenna for photosystem I in state II, Plant Cell, 24: 2963-2978. Garcia A., Gaju O., Bowerman A., Buck S., Evans J., Furbank R., Gilliham M., Millar A., Pogson B., Reynolds M., Ruan Y., Taylor N., Tyerman S., and Atkin O., 2022, Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration, The New Phytologist, 237: 60-77. https://doi.org/10.1111/nph.18545 Gust D., Moore T., and Moore A., 2001, Mimicking photosynthetic solar energy transduction, Accounts of Chemical Research, 34(1): 40-48. https://doi.org/10.1021/AR9801301 Harrison M., and Allen J., 1992, Protein phosphorylation and Mg2+ influence light harvesting and electron transport in chloroplast thylakoid membrane material containing only the chlorophyll-a/b-binding light-harvesting complex of photosystem II and photosystem I, European Journal of Biochemistry, 204(3): 1107-1114. https://doi.org/10.1111/J.1432-1033.1992.TB16735.X Hsieh S., Zhang L., Ye D., Huang X., and Cheng Y., 2019, A theoretical study on the dynamics of light harvesting in the dimeric photosystem II core complex: regulation and robustness of energy transfer pathways, Faraday Discussions, 216: 94-115. https://doi.org/10.1039/C8FD00205C Jordan P., Fromme P., Witt H., Klukas O., Saenger W., and Krauß N., 2001, Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature, 411: 909-917. https://doi.org/10.1038/35082000 Kamran M., Delgado J., Friebe V., Aartsma T., and Frese R., 2014, Photosynthetic protein complexes as bio-photovoltaic building blocks retaining a high internal quantum efficiency.. Biomacromolecules, 15(8): 2833-2838. https://doi.org/10.1021/bm500585s Kim Y., Morozov D., Stadnytskyi V., Savikhin S., and Slipchenko L., 2020, Predictive first-principles modeling of a photosynthetic antenna protein: the fenna-matthews-olson complex, The Journal of Physical Chemistry Letters, 11(5): 1636-1643. https://doi.org/10.1021/acs.jpclett.9b03486 Kouřil R., Zygadlo A., Arteni A.A., de Wit C.D., Dekker J.P., Jensen P.E., Scheller H.V., and Boekema E.J., 2005, Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry, 44: 10935-10940. Li W., Wu S., Zhang H., Zhang X., Zhuang J., Hu C., Liu Y., Lei B., Ma L., and Wang X., 2018, Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots, Advanced Functional Materials, 28(44): 1804004. https://doi.org/10.1002/adfm.201804004 Liu J., Friebe V., Frese R., and Jones M., 2019, Polychromatic solar energy conversion in pigment-protein chimeras that unite the two kingdoms of (bacterio)chlorophyll-based photosynthesis, Nature Communications, 11(1): 1542. https://doi.org/10.1038/s41467-020-15321-w Liu J., Mantell J., and Jones M., 2020, Minding the gap between plant and bacterial photosynthesis within a self-assembling biohybrid photosystem, ACS nano, 14(4): 4536-4549. https://doi.org/10.1021/acsnano.0c00058 Mulfort K., and Utschig L., 2016, Modular homogeneous chromophore-catalyst assemblies, Accounts of Chemical Research, 49(5): 835-843. https://doi.org/10.1021/acs.accounts.5b00539 Mussgnug J., Thomas-Hall S., Rupprecht J., Foo A., Klassen V., McDowall A., Schenk P., Kruse O., and Hankamer B., 2007, Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion, Plant Biotechnology Journal, 5(6):802-814. https://doi.org/10.1111/J.1467-7652.2007.00285.X Nelson N., and Junge W., 2015, Structure and energy transfer in photosystems of oxygenic photosynthesis, Annual Review of Biochemistry, 84: 659-683. https://doi.org/10.1146/annurev-biochem-092914-041942 Nelson N., and Yocum C., 2006, Structure and function of photosystems I and II, Annual Review of Plant Biology, 57: 521-565. https://doi.org/10.1146/ANNUREV.ARPLANT.57.032905.105350 Pachon L., and Brumer P., 2012, Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes, Physical chemistry chemical physics: PCCP, 14(29): 10094-10108. https://doi.org/10.1039/c2cp40815e Pan X., Cao P., Su X., Liu Z., and Li M., 2020, Structural analysis and comparison of light-harvesting complexes I and II, Biochimica et biophysica acta, Bioenergetics, 1861(4): 148038. https://doi.org/10.1016/j.bbabio.2019.06.010

RkJQdWJsaXNoZXIy MjQ4ODYzMg==