JEB_2024v15n4

Journal of Energy Bioscience 2024, Vol.15, No.4, 233-242 http://bioscipublisher.com/index.php/jeb 242 Tahir K., Hussain M., Maile N., Ghani A., Kim B., and Lee D., 2022, Microbially catalyzed enhanced bioelectrochemical performance using covalent organic framework‐modified anode in a microbial fuel cell, International Journal of Energy Research, 46: 17003-17014. https://doi.org/10.1002/er.8364 Tahir K., Miran W., Jang J., Maile N., Shahzad A., Moztahida M., Ghani A., Kim B., Jeon H., Lim S., and Lee D., 2020, Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance, Chemosphere, 268: 128784. https://doi.org/10.1016/j.chemosphere.2020.128784 Wang C., Huang Y., Sangeetha T., Chen Y., Chong W., Ong H., Zhao F., and Yan W., 2018, Novel bufferless photosynthetic microbial fuel cell (PMFCs) for enhanced electrochemical performance, Bioresource Technology, 255: 83-87. https://doi.org/10.1016/j.biortech.2018.01.086 Wang Y., Cheng X., Liu K., Dai X., Qi J., Ma Z., Qiu Y., and Liu S., 2022, 3D hierarchical Co8FeS8-FeCo2O4/N-CNTs@CF with an enhanced microorganisms-anode interface for improving microbial fuel cell performance, ACS Applied Materials And Interfaces, 14(31): 35809-35821. https://doi.org/10.1021/acsami.2c09622 Wang Y., Wen Q., Chen Y., and Li W., 2020, Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells, Energy, 204: 117942. https://doi.org/10.1016/j.energy.2020.117942 Wu H., Tan H., Chen L., Yang B., Hou Y., Lei L., and Li Z., 2020, Stainless steel cloth modified by carbon nanoparticles of Chinese ink as scalable and high-performance anode in microbial fuel cell, Chinese Chemical Letters, 32(8): 2499-2502. https://doi.org/10.1016/j.cclet.2020.12.048 Wu X., Qiao Y., Shi Z., Tang W., and Li C., 2018, Hierarchically porous N-doped carbon nanotubes/reduced graphene oxide composite for promoting flavin-based interfacial electron transfer in microbial fuel cells, ACS Applied Materials and Interfaces, 10(14): 11671-11677. https://doi.org/10.1021/acsami.7b19826 Yang J., Cheng S., Zhang S., Han W., and Jin B., 2021, Modifying Ti3C2MXene with NH4+as an excellent anode material for improving the performance of microbial fuel cells, Chemosphere, 288: 132502. https://doi.org/10.1016/j.chemosphere.2021.132502 Yang Q., Yang S., Liu G., Zhou B., Yu X., Yin Y., Yang J., and Zhao H., 2020, Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst, Chemosphere, 268: 128800. https://doi.org/10.1016/j.chemosphere.2020.128800 Yaqoob A., Ibrahim M., and Guerrero-Barajas C., 2021a, Modern trend of anodes in microbial fuel cells (MFCs): an overview, Environmental Technology and Innovation, 23: 101579. https://doi.org/10.1016/J.ETI.2021.101579 Yaqoob A., Ibrahim M., and Rodríguez-Couto S., 2020a, Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): an overview, Biochemical Engineering Journal, 164: 107779. https://doi.org/10.1016/j.bej.2020.107779 Yaqoob A., Ibrahim M., and Umar K., 2021b, Electrode material as anode for improving the electrochemical performance of microbial fuel cells, Energy Storage Battery Systems - Fundamentals and Applications. https://doi.org/10.5772/intechopen.98595 Yaqoob A., Ibrahim M., and Umar K., 2021c, Biomass-derived composite anode electrode: synthesis, characterizations, and application in microbial fuel cells (MFCs). Journal of Environmental Chemical Engineering, 9: 106111. https://doi.org/10.1016/J.JECE.2021.106111 Yaqoob A., Ibrahim M., Umar K., Bhawani S., Khan A., Asiri A., Khan M., Azam M., and Alammari A., 2020b, Cellulose derived graphene/polyaniline nanocomposite anode for energy generation and bioremediation of toxic metals via benthic microbial fuel cells. Polymers, 13(1): 135. https://doi.org/10.3390/polym13010135 Yaqoob A., Serrà A., Bhawani S., Ibrahim M., Khan A., Alorfi H., Asiri A., Hussein M., Khan I., and Umar K., 2022, Utilizing biomass-based graphene oxide–polyaniline–ag electrodes in microbial fuel cells to boost energy generation and heavy metal removal, Polymers, 14(4): 845. https://doi.org/10.3390/polym14040845 Zhao N., Ma Z., Song H., Xie Y., and Zhang M., 2019, Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell, Electrochimica Acta, 296(10): 69-74. https://doi.org/10.1016/J.ELECTACTA.2018.11.039 Zhou M., Wang H., Hassett D., and Gu T., 2013, Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts, Journal of Chemical Technology & Biotechnology, 88: 508-518. https://doi.org/10.1002/JCTB.4004

RkJQdWJsaXNoZXIy MjQ4ODYzMg==