JEB_2024v15n4

Journal of Energy Bioscience 2024, Vol.15, No.4, 233-242 http://bioscipublisher.com/index.php/jeb 241 Gajda I., You J., Santoro C., Greenman J., and Ieropoulos I., 2020, A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells, Electrochimica Acta, 353: 136388. https://doi.org/10.1016/j.electacta.2020.136388 Jiang N., Huang M., Li J., Song J., Zheng S., Gao Y., Shao M., and Li Y., 2021, Enhanced bioelectricity output of microbial fuel cells via electrospinning zeolitic imidazolate framework-67/polyacrylonitrile carbon nanofiber cathode, Bioresource technology, 337: 125358. https://doi.org/10.1016/j.biortech.2021.125358 Kaur R., Singh S., Chhabra V., Marwaha A., Kim K., and Tripathi S., 2021, A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications, Journal of Hazardous Materials, 417: 125992. https://doi.org/10.1016/j.jhazmat.2021.125992 Kusmayadi A., Leong Y., Yen H., Huang C., Dong C., and Chang J., 2020, Microalgae-microbial fuel cell (mMFC): an integrated process for electricity generation, wastewater treatment, CO2 sequestration and biomass production, International Journal of Energy Research, 44: 9254-9265. https://doi.org/10.1002/er.5531 Li M., Zhou M., Tian X., Tan C., McDaniel C., Hassett D., and Gu T., 2018, Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity, Biotechnology advances, 36(4): 1316-1327. https://doi.org/10.1016/j.biotechadv.2018.04.010 Li Y., Liu J., Chen X., Yuan X., Li N., He W., and Feng Y., 2020, Enhanced electricity generation and extracellular electron transfer by polydopamine–reduced graphene oxide (PDA–rGO) modification for high-performance anode in microbial fuel cell, Chemical Engineering Journal, 387: 123408. https://doi.org/10.1016/j.cej.2019.123408 Liang H., Han J., Yang X., Qiao Z., and Yin T., 2022, Performance improvement of microbial fuel cells through assembling anodes modified with nanoscale materials, Nanomaterials and Nanotechnology, 12: 18479804221132965. https://doi.org/10.1177/18479804221132965 Mashkour M., Rahimnejad M., Raouf F., and Navidjouy N., 2021, A review on the application of nanomaterials in improving microbial fuel cells, Biofuel Research Journal, 8(2): 1400-1416. https://doi.org/10.18331/BRJ2021.8.2.5 Masoudi M., Rahimnejad M., and Mashkour M., 2020, Fabrication of anode electrode by a novel acrylic based graphite paint on stainless steel mesh and investigating biofilm effect on electrochemical behavior of anode in a single chamber microbial fuel cell, Electrochimica Acta, 344: 136168. https://doi.org/10.1016/j.electacta.2020.136168 Massaglia G., Frascella F., Chiadò A., Sacco A., Marasso S., Cocuzza M., Pirri C., and Quaglio M., 2020, Electrospun nanofibers: from food to energy by engineered electrodes in microbial fuel cells, Nanomaterials, 10(3): 523. https://doi.org/10.3390/nano10030523 Mier A., Olvera-Vargas H., Mejía-López M., Longoria A., Verea L., Sebastian P., and Arias D., 2021, A review of recent advances in electrode materials for emerging bioelectrochemical systems: from biofilm-bearing anodes to specialized cathodes, Chemosphere, 283: 131138. https://doi.org/10.1016/j.chemosphere.2021.131138 Mohan S., Raghavulu S., Peri D., and Sarma P., 2009, Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load, Biosensors and bioelectronics, 24(7): 2021-2027. https://doi.org/10.1016/j.bios.2008.10.011 Moqsud M., Omine K., Yasufuku N., Hyodo M., and Nakata Y., 2013, Microbial fuel cell (MFC) for bioelectricity generation from organic wastes,Waste Management, 33(11): 2465-2469. https://doi.org/10.1016/j.wasman.2013.07.026 Nosek D., Jachimowicz P., and Cydzik-Kwiatkowska A., 2020, Anode modification as an alternative approach to improve electricity generation in microbial fuel cells, Energies, 13(24): 6596. https://doi.org/10.3390/en13246596 Pant D., Bogaert G., Diels L., and Vanbroekhoven K., 2010, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresource Technology, 101(6): 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017 Rahimnejad M., Asghary M., and Fallah M., 2019, Microbial fuel cell (MFC): an innovative technology for wastewater treatment and power generation, Bioremediation of Industrial Waste for Environmental Safety: Volume II: Biological Agents and Methods for Industrial Waste Management, pp.215-235. https://doi.org/10.1007/978-981-13-3426-9_9 Santoro C., Arbizzani C., Erable B., and Ieropoulos I., 2017, Microbial fuel cells: from fundamentals to applications. a review, Journal of Power Sources, 356: 225-244. https://doi.org/10.1016/j.jpowsour.2017.03.109 Saratale G., Saratale R., Shahid M., Zhen G., Kumar G., Shin H., Choi Y., and Kim S., 2017, A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs), Chemosphere, 178: 534-547. https://doi.org/10.1016/j.chemosphere.2017.03.066 Slate A., Whitehead K., Brownson D., and Banks C., 2019, Microbial fuel cells: an overview of current technology, Renewable and Sustainable Energy Reviews, 101: 60-81. https://doi.org/10.1016/J.RSER.2018.09.044 Starowicz A., Zieliński M., Rusanowska P., and Dębowski M., 2023, Microbial fuel cell performance boost through the use of graphene and its modifications—review, Energies, 16(2): 576. https://doi.org/10.3390/en16020576

RkJQdWJsaXNoZXIy MjQ4ODYzMg==