JEB_2024v15n4

Journal of Energy Bioscience 2024, Vol.15, No.4, 221-232 http://bioscipublisher.com/index.php/jeb 231 Huntley S., and Ansari A., 2021, Vermicomposting evaluation of different combinations of organic waste using Perionyx excavates, International Journal of Recycling of Organic Waste in Agriculture, 10(3): 287-295. https://doi.org/10.30486/IJROWA.2021.1910968.1146 Kapoor R., Ghosh P., Kumar M., Sengupta S., Gupta A., Kumar S., Vijay V., Kumar V., Vijay V., and Pant D., 2020, Valorization of agricultural waste for biogas based circular economy in India: A research outlook, Bioresource technology, 304: 123036. https://doi.org/10.1016/j.biortech.2020.123036 Kaur T., 2020, Vermicomposting: an effective option for recycling organic wastes, Organic Agriculture, 2020: 1-17. https://doi.org/10.5772/intechopen.91892 Kumar S., Kumar A., Singh S., Malyan S., Baram S., Sharma J., Singh R., and Pugazhendhi A., 2020, Industrial wastes: fly ash, steel slag and phosphogypsumpotential candidates to mitigate greenhouse gas emissions from paddy fields, Chemosphere, 241: 124824. https://doi.org/10.1016/j.chemosphere.2019.124824 Kyttä V., Helenius J., and Tuomisto H., 2020, Carbon footprint and energy use of recycled fertilizers in arable farming, Journal of Cleaner Production, 287: 125063. https://doi.org/10.1016/j.jclepro.2020.125063 Lee M., Lin Y., Chiueh P., and Den W., 2020, Environmental and energy assessment of biomass residues to biochar as fuel: a brief review with recommendations for future bioenergy systems, Journal of Cleaner Production, 251: 119714. https://doi.org/10.1016/j.jclepro.2019.119714 Lim S., Lee L., and Wu T., 2016, Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis, Journal of Cleaner Production, 111: 262-278. https://doi.org/10.1016/J.JCLEPRO.2015.08.083 Liu B., and Rajagopal D., 2019, Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States, Nature Energy, 4: 700-708. https://doi.org/10.1038/s41560-019-0430-2 Ludlow J., Jalil-Vega F., Rivera X., Garrido R., Hawkes A., Staffell I., and Balcombe P., 2021, Organic waste to energy: resource potential and barriers to uptake in Chile, Sustainable Production and Consumption, 28: 1522-1537. https://doi.org/10.1016/j.spc.2021.08.017 Medina J., Monreal C., Barea J., Arriagada C., Borie F., and Cornejo P., 2015, Crop residue stabilization and application to agricultural and degraded soils: A review, Waste management, 42: 41-54. https://doi.org/10.1016/j.wasman.2015.04.002 Mieldažys R., Jotautienė E., Pocius A., and Jasinskas A., 2016, Analysis of organic agricultural waste usage for fertilizer production, Agronomy research, 14: 143-149. Mlonka-Mędrala A., Evangelopoulos P., Sieradzka M., Zajemska M., and Magdziarz A., 2021, Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality char: Experimental and numerical investigations, Fuel, 296: 120611. https://doi.org/10.1016/J.FUEL.2021.120611 Moreno V., Iervolino G., Tugnoli A., and Cozzani V., 2019, Techno-economic and environmental sustainability of biomass waste conversion based on thermocatalytic reforming, Waste Management, 101: 106-115. https://doi.org/10.1016/j.wasman.2019.10.002 Mupambwa H., and Mnkeni P., 2018, Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review, Environmental Science and Pollution Research, 25: 10577-10595. https://doi.org/10.1007/s11356-018-1328-4 Nicoletti J., Ning C., and You F., 2019, Incorporating agricultural waste-to-energy pathways into biomass product and process network through data-driven nonlinear adaptive robust optimization, Energy, 180: 556-571. https://doi.org/10.1016/J.ENERGY.2019.05.096 Niedzialkoski R., Marostica R., Damaceno F., Costa L., and Costa M., 2021, Combination of biological processes for agro-industrial poultry waste management: Effects on vermicomposting and anaerobic digestion, Journal of Environmental Management, 297: 113127. https://doi.org/10.1016/j.jenvman.2021.113127 Odlare M., Arthurson V., Pell M., Svensson K., Nehrenheim E., and Abubaker J., 2011, Land application of organic waste – Effects on the soil ecosystem, Applied Energy, 88: 2210-2218. https://doi.org/10.1016/J.APENERGY.2010.12.043 Pajura R., Masłoń A., and Czarnota J., 2023, The use of waste to produce liquid fertilizers in terms of sustainable development and energy consumption in the fertilizer industry—a case study from Poland, Energies, 16(4): 1747. https://doi.org/10.3390/en16041747 Rajagopal D., and Liu B., 2020, The United States can generate up to 3.2 EJ of energy annually from waste, Nature Energy, 5: 18-19. https://doi.org/10.1038/s41560-019-0532-x Raza S., Tang J., Ali Z., Yao Z., Bah H., Iqbal H., and Ren X., 2020, Ammonia volatilization and greenhouse gases emissions during vermicomposting with animal manures and biochar to enhance sustainability, International Journal of Environmental Research and Public Health, 18(1): 178. https://doi.org/10.3390/ijerph18010178

RkJQdWJsaXNoZXIy MjQ4ODYzMg==