JEB_2024v15n3

Journal of Energy Bioscience 2024, Vol.15, No.3, 208-220 http://bioscipublisher.com/index.php/jeb 220 Puligundla P., Šmogrovičová D., Obulam V., and Ko S., 2011, Very high gravity (VHG) ethanolic brewing and fermentation: a research update, Journal of Industrial Microbiology and Biotechnology, 38: 1133-1144. https://doi.org/10.1007/s10295-011-0999-3 Qin Z., Canter C., Dunn J., Mueller S., Kwon H., Han J., Wander M., and Wang M., 2018, Land management change greatly impacts biofuels' greenhouse gas emissions., GCB Bioenergy, 10(6): 370-381. https://doi.org/10.1111/gcbb.12500 Rawaengsungnoen P., Leklai S., and Tantipaibulvut S., 2018, Ethanol production from cellulosic cassava waste, Journal of Applied ,17: 37-46. https://doi.org/10.14416/j.appsci.2018.02.S05 Ro K., Dietenberger M., Libra J., Proeschel R., Atiyeh H., Sahoo K., and Park W., 2019, Production of Ethanol from Livestock, Agricultural, and Forest Residuals: An Economic Feasibility Study, Environments, 6(8): 97. https://doi.org/10.3390/environments6080097 Rosales-Calderon O., and Arantes V., 2019, A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol, Biotechnology for Biofuels, 12: 240. https://doi.org/10.1186/s13068-019-1529-1 Scully M., Norris G., Falconi T., and Macintosh D., 2021, Carbon intensity of corn ethanol in the United States: state of the science. Environmental Research Letters, 16(4): 043001. https://doi.org/10.1088/1748-9326/abde08 Shirazi S., Abdollahipoor B., Martinson J., Windom B., Foust T., and Reardon K., 2019, Effects of dual-alcohol gasoline blends on physiochemical properties and volatility behavior, Fuel, 252: 542-552. https://doi.org/10.1016/j.fuel.2019.04.105 Sica P., Prado L., Granja P., Carvalho E., Mattos E., Calegari R., Silverio M., Martins B., and Baptista A., 2021, Effects of energy cane (Saccharum spp.) juice on corn ethanol (Zea mays) fermentation efficiency: integration towards a more sustainable production, Fermentation, 7(1): 30. https://doi.org/10.3390/fermentation7010030 Sriroth K., Piyachomkwan K., Wanlapatit S., and Nivitchanyong S., 2010, The promise of a technology revolution in cassava bioethanol: From Thai practice to the world practice, Fuel, 89: 1333-1338. https://doi.org/10.1016/j.fuel.2009.12.008 Tao L., Markham J., Haq Z., and Biddy M., 2017, Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks. Green Chemistry, 19: 1082-1101. https://doi.org/10.1039/C6GC02800D Wang Z., Dien B., Rausch K., Tumbleson M., and Singh V., 2019, Improving ethanol yields with deacetylated and two-stage pretreated corn stover and sugarcane bagasse by blending commercial xylose-fermenting and wild type Saccharomyces yeast, Bioresource technology, 282: 103-109. https://doi.org/10.1016/j.biortech.2019.02.123 Wijitkosum S., and Sriburi T., 2021, Applying cassava stems biochar produced from agronomical waste to enhance the yield and productivity of maize in unfertile soil, Fermentation, 7(4): 277. https://doi.org/10.3390/fermentation7040277 Zhao F., Wu Y., Wang L., Liu S., Wei X., Xiao J., Qiu L., and Sun P., 2020, Multi-environmental impacts of biofuel production in the U.S. Corn Belt: A coupled hydro-biogeochemical modeling approach. Journal of Cleaner Production, 251: 119561. https://doi.org/10.1016/j.jclepro.2019.119561

RkJQdWJsaXNoZXIy MjQ4ODYzMg==