JEB_2024v15n3

Journal of Energy Bioscience 2024, Vol.15, No.3, 197-207 http://bioscipublisher.com/index.php/jeb 206 Korai M., Mahar R., and Uqaili M., 2016, Optimization of waste to energy routes through biochemical and thermochemical treatment options of municipal solid waste in Hyderabad, Pakistan, Energy Conversion and Management, 124: 333-343. https://doi.org/10.1016/j.enconman.2016.07.032 Labaki M., and Jeguirim M., 2017, Thermochemical conversion of waste tyres-a review, Environmental Science and Pollution Research, 24: 9962-9992. https://doi.org/10.1007/s11356-016-7780-0 Lee X., Lee L., Hiew B., Gan S., Thangalazhy-Gopakumar S., and Ng H., 2020, Valorisation of oil palm wastes into high yield and energy content biochars via slow pyrolysis: Multivariate process optimisation and combustion kinetic studies, Materials Science for Energy Technologies, 3: 601-610. https://doi.org/10.1016/j.mset.2020.06.006 Lin J., Mariuzza D., Volpe M., Fiori L., Ceylan S., and Goldfarb J., 2021, Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels, Bioresource Technology, 328: 124765. https://doi.org/10.1016/j.biortech.2021.124765 Moreno V., Iervolino G., Tugnoli A., and Cozzani V., 2019, Techno-economic and environmental sustainability of biomass waste conversion based on thermocatalytic reforming, Waste Management, 101: 106-115. https://doi.org/10.1016/j.wasman.2019.10.002 Ong H., Chen W., Singh Y., Gan Y., Chen C., and Show P., 2020, A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach, Energy Conversion and Management, 209: 112634. https://doi.org/10.1016/j.enconman.2020.112634 Pang S., 2019, Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals, Biotechnology advances, 37(4): 589-597. https://doi.org/10.1016/j.biotechadv.2018.11.004 Patel M., Zhang X., and Kumar A., 2016, Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review, Renewable and Sustainable Energy Reviews, 53: 1486-1499. https://doi.org/10.1016/j.rser.2015.09.070 Perera S., Wickramasinghe C., Samarasiri B., and Narayana M., 2021, Modeling of thermochemical conversion of waste biomass - a comprehensive review, Biofuel Research Journal, 8(4): 1481-1528. https://doi.org/10.18331/BRJ2021.8.4.3 Safarian S., Saryazdi S., Unnthorsson R., and Richter C., 2021, Gasification of woody biomasses and forestry residues: simulation, performance analysis, and environmental impact, Fermentation, 7: 61. https://doi.org/10.3390/fermentation7020061 Solarte-Toro J., González-Aguirre J., Giraldo J., and Alzate C., 2021, Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading, Renewable and Sustainable Energy Reviews, 136: 110376. https://doi.org/10.1016/j.rser.2020.110376 Song C., Zhang C., Zhang S., Lin H., Kim Y., Ramakrishnan M., Du Y., Zhang Y., Zheng H., and Barceló D., 2020, Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives, The Science of the total environment, 749: 141972. https://doi.org/10.1016/j.scitotenv.2020.141972 Stasiek J., and Szkodo M., 2020, Thermochemical conversion of biomass and municipal waste into useful energy using advanced HiTAG/HiTSG technology, Energies, 13(16): 4218. https://doi.org/10.3390/en13164218 Uzoejinwa B., He X., Wang S., Abomohra A., Hu Y., and Wang Q., 2018, Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide, Energy Conversion and Management, 163: 468-492. https://doi.org/10.1016/j.enconman.2018.02.004 Vega L., López L., Valdés C., and Chejne F., 2019, Assessment of energy potential of wood industry wastes through thermochemical conversions, Waste management, 87: 108-118. https://doi.org/10.1016/j.wasman.2019.01.048 Yang R., Jan K., Chen C., Chen W., and Wu K., 2022, Thermochemical conversion of plastic waste into fuels, chemicals, and value-added materials: A critical review and outlooks, Chem. Sus. Chem., 15(11): e202200171. https://doi.org/10.1002/cssc.202200171 Yang Z., Wu Y., Zhang Z., Li H., Li X., Egorov R., Strizhak P., and Gao X., 2019, Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects, Renewable and Sustainable Energy Reviews, 103: 384-398. https://doi.org/10.1016/j.rser.2018.12.047

RkJQdWJsaXNoZXIy MjQ4ODYzMg==