JEB_2024v15n3

Journal of Energy Bioscience 2024, Vol.15, No.3, 171-185 http://bioscipublisher.com/index.php/jeb 184 Kim G.Y., Yun Y.M., Shin H., and Han J.I., 2017, Cultivation of four microalgae species in the effluent of anaerobic digester for biodiesel production, Bioresource Technology, 224: 738-742. https://doi.org/10.1016/j.biortech.2016.11.048 Kwon M., and Yeom S., 2017, Evaluation of closed photobioreactor types and operation variables for enhancing lipid productivity of Nannochloropsis sp. KMMCC 290 for biodiesel production, Biotechnology and Bioprocess Engineering, 22: 604-611. https://doi.org/10.1007/s12257-017-0107-2 Loera-Quezada M.M., Leyva-González M.A., Velázquez-Juárez G., Sánchez-Calderón L., Do Nascimento M., López-Arredondo D., and Herrera-Estrella L., 2016, A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae, Plant Biotechnology Journal, 14: 2066-2076. https://doi.org/10.1111/pbi.12564 Malcata F., 2022, Engineering of microalgae toward biodiesel: Facts and prospects, Journal of The American Oil Chemists Society, 111 River St, Hoboken 07030-5774, Nj Usa: Wiley, 99: 48. Mallick N., Bagchi S., Koley S., and Singh A.K., 2016, Progress and Challenges in Microalgal Biodiesel Production, Frontiers in Microbiology, 7: 1019. https://doi.org/10.3389/fmicb.2016.01019 Mayers J.J., Nilsson A., Albers E., and Flynn K., 2017, Nutrients from anaerobic digestion effluents for cultivation of the microalga Nannochloropsis sp. - Impact on growth, biochemical composition and the potential for cost and environmental impact savings, Algal Research-Biomass Biofuels and Bioproducts, 26: 275-286. https://doi.org/10.1016/j.algal.2017.08.007 Mitra M., and Mishra S., 2019, A biorefinery from Nannochloropsis spp. utilizing wastewater resources, Application of Microalgae in Wastewater Treatment, pp.123-145. https://doi.org/10.1007/978-3-030-13909-4_6 Mohammady N., El-Khatib K., El-Galad M., Abo El-Enin S.A., Attia N., El-Araby R., El Diwani G.E., and Manning S., 2020, Preliminary study on the economic assessment of culturing Nannochloropsis sp. in Egypt for the production of biodiesel and high-value biochemicals, Biomass Conversion and Biorefinery, 12: 3319-3331. https://doi.org/10.1007/s13399-020-00878-9 Molina-Miras A., Bueso-Sánchez A., Cerón-García M.C., Sánchez-Mirón A., Contreras-Gómez A., and García-Camacho F., 2022, Effect of nitrogen, phosphorous, and light colimitation on amphidinol production and growth in the marine dinoflagellate microalga Amphidinium carterae, Toxins, 14(9): 594. https://doi.org/10.3390/toxins14090594 Narala R.R., Garg S., Sharma K., Thomas-Hall S., Deme M., Li Y., and Schenk P., 2016, Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system, Frontiers in Energy Research, 4: 29. https://doi.org/10.3389/fenrg.2016.00029 Nwokoagbara E., Olaleye A.K., and Wang M., 2015, Biodiesel from microalgae: The use of multi-criteria decision analysis for strain selection. Fuel, 159: 241-249. https://doi.org/10.1016/j.fuel.2015.06.074 Patil P., Dandamudi K.P.R., Wang J., Deng Q., and Deng S., 2018, Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. Journal of Supercritical Fluids, 135: 60-68. https://doi.org/10.1016/j.supflu.2017.12.019 Paudel A., Jessop M.J., Stubbins S.H., Champagne P., and Jessop P., 2015, Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2, Bioresource Technology, 184: 286-290. https://doi.org/10.1016/j.biortech.2014.11.111 Peng X., Meng F., Wang Y., Yi X., and Cui H., 2020a, Effect of pH, Temperature, and CO2 Concentration on Growth and Lipid Accumulation of Nannochloropsis sp. MASCC 11, Journal of Ocean University of China, 19: 1183-1192. https://doi.org/10.1007/s11802-020-4302-y Peng Y.Y., Gao F., Yang H.L., Wu H., Li C., Lu M.M., and Yang Z.Y., 2020b, Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR), The Science of the Total Environment, 725: 138524. https://doi.org/10.1016/j.scitotenv.2020.138524 Qunju H., Xiang W., Fangfang Y., Tao L., Guanghua W., Shikun D., Hualian W., and Jiewei F., 2016, Evaluation of five Nannochloropsis Sp. strains for biodiesel and poly-unsaturated fatty acids (PUFAs) production, Journal of Marine Science: Research and Development, 4(1): 1000128. https://doi.org/10.4172/2332-0737.1000128 Sabu S., Singh I.S.B., and Joseph V., 2017, Molecular Identification and Comparative Evaluation of Tropical Marine Microalgae for Biodiesel Production, Marine Biotechnology, 19: 328-344. https://doi.org/10.1007/s10126-017-9754-8 Sevda S., Bhattacharya S., Reesh I.A., Bhuvanesh S., and Sreekrishnan T., 2017, Challenges in the design and operation of an efficient photobioreactor for microalgae cultivation and hydrogen production, Biohydrogen Production: Sustainability of Current Technology and Future Perspective, PP.147-162. https://doi.org/10.1007/978-81-322-3577-4_7

RkJQdWJsaXNoZXIy MjQ4ODYzMg==