JEB_2024v15n3

Journal of Energy Bioscience 2024, Vol.15, No.3, 171-185 http://bioscipublisher.com/index.php/jeb 183 Branco-Vieira M., Mata T., Martins A., Freitas M. V., and Caetano N., 2020, Economic analysis of microalgae biodiesel production in a small-scale facility, Energy Reports, 6: 325-332. https://doi.org/10.1016/j.egyr.2020.11.156 Chai W.S., Tan W.G., Munawaroh H.S.H., Gupta V., Ho S.-H., and Show P., 2020, Multifaceted roles of microalgae in the application of wastewater biotreatment: A review, Environmental Pollution, 269: 116236. https://doi.org/10.1016/j.envpol.2020.116236 Cheah W.Y., Ling T., Show P., Juan J., Chang J.-S., and Lee D.-J., 2016, Cultivation in wastewaters for energy: A microalgae platform. Applied Energy, 179: 609-625. https://doi.org/10.1016/j.apenergy.2016.07.015 Daneshvar E., Zarrinmehr M.J., Malekzadeh Hashtjin A., Farhadian O., and Bhatnagar A., 2018, Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption, Bioresource Technology, 268: 523-530. https://doi.org/10.1016/j.biortech.2018.08.032 Deshmukh S., Bala K., and Kumar R., 2019, Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production, Environmental Science and Pollution Research, 26: 24462-24473. https://doi.org/10.1007/s11356-019-05692-z Dharani G., Peter D.M., Leema J.T.M., Kumar T.S., Thirupathi K., Josephine A., Kirubagaran R., and Atmanand M., 2020, Mass culture of marine microalgae Chlorella vulgaris (NIOT-74) and production of biodiesel, Current Science, 118(11): 1731-1738. https://doi.org/10.18520/cs/v118/i11/1731-1738 Dickinson S., Mientus M., Frey D., Amini-Hajibashi A., Ozturk S., Shaikh F., Sengupta D., and El-Halwagi M., 2017, A review of biodiesel production from microalgae, Clean Technologies and Environmental Policy, 19: 637-668. https://doi.org/10.1007/s10098-016-1309-6 Díez-Montero R., Belohlav V., Ortíz A., Uggetti E., García-Galán M.J., and García J., 2020, Evaluation of daily and seasonal variations in a semi-closed photobioreactor for microalgae-based bioremediation of agricultural runoff at full-scale, Algal Research-Biomass Biofuels and Bioproducts, 47: 101859. https://doi.org/10.1016/j.algal.2020.101859 Ge S., and Champagne P., 2017, Cultivation of the marine macroalgae Chaetomorpha linum in municipal wastewater for nutrient recovery and biomass production, Environmental Science and Technology, 51(6): 3558-3566. https://doi.org/10.1021/acs.est.6b06039 Ghosh A., Khanra S., Mondal M., Halder G., Tiwari O., Saini S., and Bhowmick T., 2016, Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review, Energy Conversion and Management, 113: 104-118. https://doi.org/10.1016/j.enconman.2016.01.050 Guldhe A., Misra R., Singh P., Rawat I., and Bux F., 2016, An innovative electrochemical process to alleviate the challenges for harvesting of small size microalgae by using non-sacrificial carbon electrodes, Algal Research-Biomass Biofuels and Bioproducts, 19: 292-298. https://doi.org/10.1016/j.algal.2015.08.014 Gupta P.L., Lee S.-M., and Choi H.-J., 2015, A mini review: photobioreactors for large scale algal cultivation, World Journal of Microbiology and Biotechnology, 31: 1409-1417. https://doi.org/10.1007/s11274-015-1892-4 Gupta S., Pawar S., and Pandey R., 2019, Current practices and challenges in using microalgae for treatment of nutrient-rich wastewater from agro-based industries, The Science of the Total Environment, 687: 1107-1126. https://doi.org/10.1016/j.scitotenv.2019.06.115 He Y., Wang X., Wei H., Zhang J., Chen B., and Chen F., 2019, Direct enzymatic ethanolysis of potential Nannochloropsis biomass for co-production of sustainable biodiesel and nutraceutical eicosapentaenoic acid, Biotechnology for Biofuels, 12: 78. https://doi.org/10.1186/s13068-019-1418-7 He Y., Zhang B., Guo S., Guo Z., Chen B., and Wang M., 2020, Sustainable biodiesel production from the green microalgae Nannochloropsis: Novel integrated processes from cultivation to enzyme-assisted extraction and ethanolysis of lipids, Energy Conversion and Management, 209: 112618. https://doi.org/10.1016/j.enconman.2020.112618 Hernández-García A., Velasquez-Orta S.B., Novelo E., Yáñez-Noguez I., Monje-Ramirez I., and Orta Ledesma M.T., 2019, Wastewater-leachate treatment by microalgae: Biomass, carbohydrate, and lipid production, Ecotoxicology and Environmental Safety, 174: 435-444. https://doi.org/10.1016/j.ecoenv.2019.02.052 Hinterholz C.L., Trigueros D., Módenes A., Borba C.E., Scheufele F.B., Schuelter A.R., and Kroumov A., 2019, Computational fluid dynamics applied for the improvement of a flat-plate photobioreactor towards high-density microalgae cultures, Biochemical Engineering Journal, 151: 107257. https://doi.org/10.1016/j.bej.2019.107257 Huang G., Chen F., Wei D., Zhang X., and Chen G., 2018, Biodiesel Production by Microalgal Biotechnology, Renewable Energy, 87(1): 38-46. https://doi.org/10.1016/j.apenergy.2009.06.016 Kawaroe M., Hwangbo J., Augustine D., and Putra H.A., 2015, Comparison of density, specific growth rate, biomass weight, and doubling time of microalgae Nannochloropsis sp. cultivated in Open Raceway Pond and Photobioreactor, Aacl Bioflux, 8: 740-750. Kawaroe M., Prartono T., Sunuddin A., and Saputra D., 2016, Marine microalgae tetraselmis suecica as flocculant agent of bio-flocculation method, Hayati Journal of Biosciences, 23: 62-66. https://doi.org/10.1016/j.hjb.2015.09.003

RkJQdWJsaXNoZXIy MjQ4ODYzMg==