JEB_2024v15n2

Journal of Energy Bioscience 2024, Vol.15, No.2, 85-95 http://bioscipublisher.com/index.php/jeb 94 The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Aiyer K., 2020, How does electron transfer occur in microbial fuel cells? World Journal of Microbiology and Biotechnology, 36: 19. https://doi.org/10.1007/s11274-020-2801-z Chen H., Yu Y., Yu Y., Ye J., Zhang S., and Chen J., 2021, Exogenous electron transfer mediator enhancing gaseous toluene degradation in a microbial fuel cell: Performance and electron transfer mechanism, Chemosphere, 282: 131028. https://doi.org/10.1016/j.chemosphere.2021.131028 Fernandes T., Morgado L., Turner D., and Salgueiro C., 2021, Protein engineering of electron transfer components from electroactive geobacter bacteria, Antioxidants, 10(6): 844. https://doi.org/10.3390/antiox10060844 Füeg M., Borjas Z., Estevez-Canales M., Estéve-Núñez A., Estéve-Núñez A., Pobelov I., Broekmann P., and Kuzume A., 2019, Interfacial electron transfer between Geobacter sulfurreducens and gold electrodes via carboxylate-alkanethiol linkers: Effects of the linker length, Bioelectrochemistry, 126: 130-136. https://doi.org/10.1016/j.bioelechem.2018.11.013 Kalathil S., and Pant D., 2016, Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems, RSC Advances, 6: 30582-30597. https://doi.org/10.1039/C6RA04734C Kracke F., Vassilev I., and Krömer J., 2015, Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems, Frontiers in Microbiology, 6: 575. https://doi.org/10.3389/fmicb.2015.00575 Lan T., Wang C., Sangeetha T., Yang Y., and Garg A., 2018, Constructed mathematical model for nanowire electron transfer in microbial fuel cells, Journal of Power Sources, 402: 483-488. https://doi.org/10.1016/J.JPOWSOUR.2018.09.074 Li Y., Liu J., Chen X., Yuan X., Li N., He W., and Feng Y., 2021, Tailoring spatial structure of electroactive biofilm for enhanced activity and direct electron transfer on iron phthalocyanine modified anode in microbial fuel cells, Biosensors & bioelectronics, 191: 113410. https://doi.org/10.1016/j.bios.2021.113410 Liu P., Liang P., Jiang Y., Hao W., Miao B., Wang D., and Huang X., 2018b, Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell, Applied Energy, 216: 382-388. https://doi.org/10.1016/J.APENERGY.2018.01.073. Liu X., Shi L., and Gu J., 2018, Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer, Biotechnology advances, 36(7): 1815-1827. https://doi.org/10.1016/j.biotechadv.2018.07.001 Logan B., Rossi R., Ragab A., and Saikaly P., 2019, Electroactive microorganisms in bioelectrochemical systems, Nature Reviews Microbiology, 17: 307-319. https://doi.org/10.1038/s41579-019-0173-x Lovley D., and Holmes D., 2021, Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms., Nature Reviews Microbiology, 20: 5-19. https://doi.org/10.1038/s41579-021-00597-6 Pankratova G., Hederstedt L., and Gorton L., 2019, Extracellular electron transfer features of Gram-positive bacteria, Analytica chimica acta, 1076: 32-47. https://doi.org/10.1016/J.ACA.2019.05.007 Paquete C., Morgado L., Salgueiro C., and Louro R., 2022, Molecular mechanisms of microbial extracellular electron transfer: the importance of multiheme cytochromes, Frontiers in Bioscience, 27(6): 174. https://doi.org/10.31083/j.fbl2706174 Pinto D., Coradin T., and Laberty‐Robert C., 2018, Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells, Bioelectrochemistry, 120: 1-9. https://doi.org/10.1016/j.bioelechem.2017.10.008 Ren H., Lee H., Zhang J., Gardner C., and Chae J., 2020, A quantitative extracellular electron transfer (EET) kinetics study of Geobacter sulfurreducens enriched microbial community reveals the transition of EET limiting step during biofilm growth, International Journal of Hydrogen Energy, 46(4): 3124-3134. https://doi.org/10.1016/j.ijhydene.2020.06.252 Santos T., Silva M., Morgado L., Dantas J., and Salgueiro C., 2015, Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer, Dalton transactions, 44(20): 9335-9344. https://doi.org/10.1039/c5dt00556f Slate A., Whitehead K., Brownson D., and Banks C., 2019, Microbial fuel cells: An overview of current technology, Renewable and Sustainable Energy

RkJQdWJsaXNoZXIy MjQ4ODYzMg==