GAB_2024v15n5

Genomics and Applied Biology 2024, Vol.15, No.5, 264-275 http://bioscipublisher.com/index.php/gab 274 Li J., Walker S., Nie J., and Zhang X., 2019, Experiments that led to the first gene-edited babies: the ethical failings and the urgent need for better governance, Journal of Zhejiang University-SCIENCE B, 20: 32-38. https://doi.org/10.1631/jzus.B1800624 Lin H., Li G., Peng X., Deng A., Ye L., Shi L., Wang T., and He J., 2021, The use of CRISPR/Cas9 as a tool to study human infectious viruses, Frontiers in Cellular and Infection Microbiology, 11: 590989. https://doi.org/10.3389/fcimb.2021.590989 Lino C., Harper J., Carney J., and Timlin J., 2018, Delivering CRISPR: a review of the challenges and approaches, Drug Delivery, 25: 1234-1257. https://doi.org/10.1080/10717544.2018.1474964 Liu W., Yu H., Zhou X., and Xing D., 2016, In vitro evaluation of CRISPR/Cas9 function by an electrochemiluminescent assay, Analytical Chemistry, 88(17): 8369-8374. https://doi.org/10.1021/acs.analchem.6b02338 Ma D., and Liu F., 2015, Genome editing and its applications in model organisms, Genomics, Proteomics and Bioinformatics, 13: 336-344. https://doi.org/10.1016/j.gpb.2015.12.001 Mahas A., Stewart C., and Mahfouz M., 2017, Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation, Biotechnology Advances, 36(1): 295-310. https://doi.org/10.1016/j.biotechadv.2017.11.008 Malogolovkin A., and Kolbasov D., 2019, Genetic and antigenic diversity of African swine fever virus, Virus research, 271: 197673. https://doi.org/10.1016/j.virusres.2019.197673 Manghwar H., Li B., Ding X., Hussain A., Lindsey K., Zhang X., and Jin S., 2020, CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects, Advanced Science, 7(6): 1902312. https://doi.org/10.1002/advs.201902312 Manghwar H., Lindsey K., Zhang X., and Jin S., 2019, CRISPR/Cas system: recent advances and future prospects for genome editing, Trends in Plant Science, 24(12): 1102-1125. https://doi.org/10.1016/j.tplants.2019.09.006 Naeem M., Majeed S., Hoque M., and Ahmad I., 2020, Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing, Cells, 9(7): 1608. https://doi.org/10.3390/cells9071608 O'Donnell V., Holinka L., Gladue D., Sanford B., Krug P., Lu X., Arzt J., Reese B., Carrillo C., Risatti G., and Borca M., 2015, African swine fever virus georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus, Journal of Virology, 89: 6048-6056. https://doi.org/10.1128/JVI.00554-15 O'Donnell V., Holinka L., Sanford B., Krug P., Carlson J., Pacheco J., Reese B., Risatti G., Gladue D., and Borca M., 2016, African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge, Virus research, 221: 8-14. https://doi.org/10.1016/j.virusres.2016.05.014 Pavlovic K., Pavlovic K., Tristán-Manzano M., Maldonado-Pérez N., Cortijo-Gutiérrez M., Sanchez-Hernandez S., Justicia-Lirio P., Carmona M., Herrera C., Herrera C., Martín F., and Benabdellah K., 2020, Using gene editing approaches to fine-tune the immune system, Frontiers in Immunology, 11: 570672. https://doi.org/10.3389/fimmu.2020.570672 Pérez-Núñez D., Sunwoo S., García-Belmonte R., Kim C., Vigara-Astillero G., Riera E., Kim D., Jeong J., Tark D., Ko Y., You Y., and Revilla Y., 2022, Recombinant African swine fever virus Arm/07/CBM/c2 lacking CD2v and A238L is attenuated and protects pigs against virulent korean paju strain, Vaccines, 10(12): 1992. https://doi.org/10.3390/vaccines10121992 Petrovan V., Murgia M., Wu P., Lowe A., Jia W., and Rowland R., 2020, Epitope mapping of African swine fever virus (ASFV) structural protein, p54, Virus Research, 279: 197871. https://doi.org/10.1016/j.virusres.2020.197871 Pillai S., and Raybould A., 2023, Editorial: insights in biosafety and biosecurity 2022: novel developments, current challenges, and future perspectives, Frontiers in Bioengineering and Biotechnology, 10: 1118506. https://doi.org/10.3389/fbioe.2022.1118506 Qi X., Feng T., Ma Z., Zheng L., Liu H., Shi Z., Shen C., Li P., Wu P., Ru Y., Li D., Zhu Z., Tian H., Wu S., and Zheng H., 2023, Deletion of DP148R, DP71L, and DP96R attenuates African swine fever virus, and the mutant strain confers complete protection against homologous challenges in pigs, Journal of Virology, 97(4): e00247-23. https://doi.org/10.1128/jvi.00247-23 Rodriguez-Rodriguez D., Ramírez-Solís R., Garza-Elizondo M., Garza-Rodríguez M., and Barrera-Saldana H., 2019, Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review), International Journal of Molecular Medicine, 43: 1559-1574. https://doi.org/10.3892/ijmm.2019.4112 Rui Y., Wilson D., and Green J., 2019, Non-viral delivery to enable genome editing, Trends in Biotechnology, 37(3):281-293 https://doi.org/10.1016/j.tibtech.2018.08.010

RkJQdWJsaXNoZXIy MjQ4ODYzMg==