GAB_2024v15n5

Genomics and Applied Biology 2024, Vol.15, No.5, 264-275 http://bioscipublisher.com/index.php/gab 273 Cackett G., Matelska D., Sýkora M., Portugal R., Malecki M., Bähler J., Dixon L., and Werner F., 2020, The African swine fever virus transcriptome, Journal of Virology, 94(9): 10.1128. https://doi.org/10.1128/JVI.00119-20 Chen X., and Gonçalves M., 2015, Engineered viruses as genome editing devices, Molecular Therapy, 24: 447-457. https://doi.org/10.1038/mt.2015.164 Correia S., Ventura S., and Parkhouse R., 2013, Identification and utility of innate immune system evasion mechanisms of ASFV, Virus research, 173(1): 87-100. https://doi.org/10.1016/j.virusres.2012.10.013 Demirci Y., Zhang B., and Unver T., 2018, CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing, Journal of Cellular Physiology, 233: 1844-1859. https://doi.org/10.1002/jcp.25970 DiEuliis D., and Giordano J., 2017, Gene editing using CRISPR/Cas9: implications for dual-use and biosecurity, Protein and Cell, 9: 239-240. https://doi.org/10.1007/s13238-017-0493-4 Dixon L., Chapman D., Netherton C., and Upton C., 2013, African swine fever virus replication and genomics, Virus research, 173(1): 3-14. https://doi.org/10.1016/j.virusres.2012.10.020 Eş I., Gavahian M., Martí-Quijal F., Lorenzo J., Khaneghah A., Tsatsanis C., Kampranis S., and Barba F., 2019, The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges, Biotechnology Advances, 37(3): 410-421. https://doi.org/10.1016/j.biotechadv.2019.02.006 Gallardo C., Casado N., Soler A., Djadjovski I., Krivko L., Madueño E., Nieto R., Pérez C., Simón A., Ivanova E., Donescu D., Milicevik V., Chondrokouki E., Nurmoja I., Frant M., Feliziani F., Václavek P., Pilevičienė S., and Marisa A., 2023, A multi gene-approach genotyping method identifies 24 genetic clusters within the genotype II-European African swine fever viruses circulating from 2007 to 2022, Frontiers in Veterinary Science, 10: 1112850. https://doi.org/10.3389/fvets.2023.1112850 Gallardo C., Sánchez E., Pérez-Núñez D., Nogal M., León P., Carrascosa Á., Nieto R., Soler A., Arias M., and Revilla Y., 2018, African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses, Vaccine, 36(19): 2694-2704. https://doi.org/10.1016/j.vaccine.2018.03.040 García-Dorival I., Cuesta-Geijo M., Galindo I., Puerto A., Barrado-Gil L., Urquiza J., and Alonso C., 2023, Elucidation of the cellular interactome of African swine fever virus fusion proteins and identification of potential therapeutic targets, Viruses, 15(5): 1098. https://doi.org/10.3390/v15051098 Gladue D., O'Donnell V., Ramírez-Medina E., Rai A., Pruitt S., Vuono E., Silva E., Velazquez-Salinas L., and Borca M., 2020, Deletion of CD2-like (CD2v) and C-type lectin-like (EP153R) genes from African swine fever virus georgia-∆9GL abrogates its effectiveness as an experimental vaccine, Viruses, 12(10): 1185. https://doi.org/10.3390/v12101185 Gupta D., Bhattacharjee O., Mandal D., Sen M., Dey D., Dasgupta A., Kazi T., Gupta R., Sinharoy S., Acharya K., Chattopadhyay D., Ravichandiran V., Roy S., and Ghosh D., 2019, CRISPR-Cas9 system: A new-fangled dawn in gene editing, Life sciences, 232: 116636. https://doi.org/10.1016/j.lfs.2019.116636 Gupta S., and Shukla P., 2017, Gene editing for cell engineering: trends and applications. Critical Reviews in Biotechnology, 37: 672-684. https://doi.org/10.1080/07388551.2016.1214557 Hawsawi Y., Shams A., Theyab A., Siddiqui J., Barnawee M., Abdali W., Marghalani N., Alshelali N., Al-Sayed R., Alzahrani O., Alqahtani A., and Alsulaiman A., 2022, The state-of-the-art of gene editing and its application to viral infections and diseases including COVID-19, Frontiers in Cellular and Infection Microbiology, 12: 869889. https://doi.org/10.3389/fcimb.2022.869889 Janik E., Niemcewicz M., Ceremuga M., Krzowski L., Saluk-Bijak J., and Bijak M., 2020, Various aspects of a gene editing system-CRISPR-Cas9, International Journal of Molecular Sciences, 21(24): 9604. https://doi.org/10.3390/ijms21249604 Jones H., 2015, Regulatory uncertainty over genome editing, Nature Plants, 1(1): 1-3. https://doi.org/10.1038/nplants.2014.11 Lema M., 2019, Regulatory aspects of gene editing in Argentina, Transgenic Research, 28: 147-150. https://doi.org/10.1007/s11248-019-00145-2 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University. Science. B, 22: 253-284. https://doi.org/10.1631/jzus.B2100009 Li H., Yang Y., Hong W., Huang M., Wu M., and Zhao X., 2020, Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects, Signal Transduction and Targeted Therapy, 5(1): 1. https://doi.org/10.1038/s41392-019-0089-y Li J., Song J., Zhou S., Li S., Liu J., Li T., Zhang Z., Zhang X., He X., Chen W., Zheng J., Zhao D., Bu Z., Huang L., and Weng C., 2023, Development of a new effective African swine fever virus vaccine candidate by deletion of the H240R and MGF505-7R genes results in protective immunity against the Eurasia strain, Journal of Virology, 97(10): e00704-23. https://doi.org/10.1128/jvi.00704-23

RkJQdWJsaXNoZXIy MjQ4ODYzMg==