GAB_2024v15n5

Genomics and Applied Biology 2024, Vol.15, No.5, 255-263 http://bioscipublisher.com/index.php/gab 263 Oliveira C., Shakiba E., North D., McGraw M., Ballard E., Barrett-D'Amico M., Glazko G., and Rahmatallah Y., 2022, 16S rRNA gene-based metagenomic analysis of rhizosphere soil bacteria in Arkansas rice crop fields, Agronomy, 12(1): 222. https://doi.org/10.3390/agronomy12010222 Philippot L., Raaijmakers J., Lemanceau P., and Putten W., 2013, Going back to the roots: the microbial ecology of the rhizosphere, Nature Reviews Microbiology, 11: 789-799.. https://doi.org/10.1038/nrmicro3109 Pramanik K., Das A., Banerjee J., Das A., Chatterjee S., Sharma R., Kumar S., and Gupta S., 2020, Metagenomic insights into rhizospheric microbiome profiling in lentil cultivars unveils differential microbial nitrogen and phosphorus metabolism under rice-fallow ecology, Int. J. Mol. Sci., 21: 8895. https://doi.org/10.3390/ijms21238895 Schmidt H., and Eickhorst T., 2013, Spatio-temporal variability of microbial abundance and community structure in the puddled layer of a paddy soil cultivated with wetland rice (Oryza sativa L.), Applied Soil Ecology, 72: 93-102. https://doi.org/10.1016/j.apsoil.2013.06.002 Sun R., Zhang W., Liu Y., Yun W., Luo B., Chai R., Zhang C., Xiang X., and Su X., 2022, Changes in phosphorus mobilization and community assembly of bacterial and fungal communities in rice rhizosphere under phosphate deficiency, Frontiers in Microbiology, 13: 953340. https://doi.org/10.3389/fmicb.2022.953340 Tang X.Q., 2024, Decoding microbial interactions: mechanistic insights into engineered syncoms at the microscopic level, Bioscience Method, 15(2): 76-88. https://doi.org/10.5376/bm.2024.15.0009 Wan W., Tan J., Wang Y., Qin Y., He H., Wu H., Zuo W., and He D., 2020, Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function, The Science of the Total Environment, 700: 134418. https://doi.org/10.1016/j.scitotenv.2019.134418 Wang W., Luo X., Chen Y., Ye X., Wang H., Cao Z., Ran W., and Cui Z., 2019, Succession of composition and function of soil bacterial communities during key rice growth stages, Frontiers in Microbiology, 10: 421. https://doi.org/10.3389/fmicb.2019.00421 Wei S., Liu B., Ni K., Ma L., Shi Y., Leng Y., Zheng S., Gao S., Yang X., and Ruan J., 2023, Rhizosphere microbial community shows a greater response than soil properties to tea (Camellia sinensis L.) cultivars, Agronomy, 13(1): 221. https://doi.org/10.3390/agronomy13010221 Xiao X., Wang J., Li J., Li X., Dai X., Shen R., and Zhao X., 2022, Distinct patterns of rhizosphere microbiota associated with rice genotypes differing in aluminum tolerance in an acid sulfate soil, Frontiers in Microbiology, 13: 933722. https://doi.org/10.3389/fmicb.2022.933722 Zecchin S., Wang J., Martin M., Romani M., Planer-Friedrich B., and Cavalca L., 2023, Microbial communities in paddy soils: differences in abundance and functionality between rhizosphere and pore water, the influence of different soil organic carbon, sulfate fertilization and cultivation time, and contribution to arsenic mobility and speciation, FEMS Microbiology Ecology, 99(11): fiad121. https://doi.org/10.1093/femsec/fiad121 Zhang Y., Jiang W., Li Q., Xu W., Wang J., Hu J., and Zhang Z., 2021, Soil nutrient levels determine the variation of bacterial communities in the rhizosphere of rice under different conditions of climate and genotype, Applied Soil Ecology, 167: 104025. https://doi.org/10.1016/j.apsoil.2021.104025

RkJQdWJsaXNoZXIy MjQ4ODYzMg==