Genomics and Applied Biology 2024, Vol.15, No.5, 245-254 http://bioscipublisher.com/index.php/gab 254 Ren L., Shang Y., Yang L., Wang S., Wang X., Chen S., Bao Z., An D., Meng F., Cai J., and Guo Y., 2020, Chromosome-level de novo genome assembly of Sarcophaga peregrina provides insights into the evolutionary adaptation of flesh flies, Molecular Ecology Resources, 21: 251-262. https://doi.org/10.1111/1755-0998.13246 Schaal S., and Wuitchik S., 2023, Comparative study highlights how gene flow shapes adaptive genomic architecture, Molecular Ecology, 32,: 1545-1548. https://doi.org/10.1111/mec.16882 Shan S., Soltis P., Soltis D., and Yang B., 2020, Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems, Applications in Plant Sciences, 8(1): e11314. https://doi.org/10.1002/aps3.11314 Soudi S., Crepeau M., Collier T., Lee Y., Cornel A., and Lanzaro G., 2022, Genomic signatures of local adaptation in recent invasive Aedes aegypti populations in California, BMC Genomics, 24(1): 311. https://doi.org/10.1186/s12864-023-09402-5 Stuart O., Binns M., Umina P., Holloway J., Severtson D., Nash M., Heddle T., Helden M., and Hoffmann A., 2019, Morphological and molecular analysis of Australian earwigs (Dermaptera) points to unique species and regional endemism in the Anisolabididae family, Insects, 10(3): 72. https://doi.org/10.3390/insects10030072 Tavakoli K., Pour-Aboughadareh A., Kianersi F., Poczai P., Etminan A., and Shooshtari L., 2021, Applications of CRISPR-Cas9 as an advanced genome editing system in life sciences, BioTech, 10(3): 14.. https://doi.org/10.3390/biotech10030014 Valero K., Garcia-Porta J., Irisarri I., Feugere L., Bates A., Kirchhof S., Glavaš O., Pafilis P., Samuel S., Müller J., Vences M., Turner A., Beltran-Alvarez P., and Storey K., 2021, Functional genomics of abiotic environmental adaptation in lacertid lizards and other vertebrates, The Journal of Animal Ecology, 91(6): 1163-1179. https://doi.org/10.1111/1365-2656.13617 Weigand H., Weiss M., Cai H., Li Y., Yu L., Zhang C., and Leese F., 2018, Fishing in troubled waters: Revealing genomic signatures of local adaptation in response to freshwater pollutants in two macroinvertebrates, The Science of the total environment, 633: 875-891. https://doi.org/10.1016/j.scitotenv.2018.03.109 Westfall A., Telemeco R., Grizante M., Waits D., Clark A., Simpson D., Klabacka R., Sullivan A., Perry G., Sears M., Cox C., Cox R., Gifford M., John-Alder H., Langkilde T., Angilletta M., Leaché A., Tollis M., Kusumi K., and Schwartz T., 2021, A chromosome-level genome assembly for the eastern fence lizard (Sceloporus undulatus), a reptile model for physiological and evolutionary ecology, GigaScience, 10(10): giab066. https://doi.org/10.1093/gigascience/giab066 Wipfler B., Koehler W., Frandsen P., Donath A., Liu S., Machida R., Misof B., Peters R., Shimizu S., Zhou X., and Simon S., 2020, Phylogenomics changes our understanding about earwig evolution, Systematic Entomology, 45(3): 516-526. https://doi.org/10.1111/syen.12420 Zhang C., Quan R., and Wang J., 2018, Development and application of CRISPR/Cas9 technologies in genomic editing, Human Molecular Genetics, 27(R2): R79-R88. https://doi.org/10.1093/hmg/ddy120 Zhang W., Yu H., Lv Y., Bushley K., Wickham J., Gao S., Hu S., Zhao L., and Sun J., 2020, Gene family expansion of pinewood nematode to detoxify its host defence chemicals, Molecular Ecology, 29: 940-955. https://doi.org/10.1111/mec.15378 Zhu G., Chereddy S., Howell J., and Palli S., 2020, Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation, Insect Biochemistry and Molecular Biology, 122: 103373. https://doi.org/10.1016/j.ibmb.2020.103373
RkJQdWJsaXNoZXIy MjQ4ODYzMg==