Genomics and Applied Biology 2024, Vol.15, No.5, 245-254 http://bioscipublisher.com/index.php/gab 253 Depardieu C., Gérardi S., Nadeau S., Parent G., MacKay J., Lenz P., Lamothe M., Girardin M., Bousquet J., and Isabel N., 2021, Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer, Molecular Ecology, 30: 3898-3917. https://doi.org/10.1111/mec.15846 Dudaniec R., Yong C., Lancaster L., Svensson E., and Hansson B., 2018, Signatures of local adaptation along environmental gradients in a range-expanding damselfly (Ischnura elegans), Molecular Ecology, 27: 2576-2593. https://doi.org/10.1111/mec.14709 Fattorini S., 2022, Historical biogeography Of Earwigs, Biology, 11(12): 1794. https://doi.org/10.3390/biology11121794 Guo Z., Xu S., Xie W., Shao S., Feng X., He Z., Zhong C., Huang K., Wu C., and Shi S., 2022, Adaptation to a new environment with pre-adaptive genomic features - Evidence from woody plants colonizing the land-sea interface, The Plant Journal: for Cell and Molecular Biology, 111(5): 1411-1424. https://doi.org/10.1111/tpj.15899 Hiruta C., Kakui K., Tollefsen K., and Iguchi T., 2018, Targeted gene disruption by use of CRISPR/Cas9 ribonucleoprotein complexes in the water flea Daphnia pulex, Genes to Cells, 23: 494-502. https://doi.org/10.1111/gtc.12589 Hu T., Chen G., Xu Z., Luo S., Wang H., Li C., Shan L., and Zhang B., 2022, De novo whole-genome sequencing and assembly of the yellow-throated bunting (Emberiza elegans) provides insights into its evolutionary adaptation, Animals : an Open Access Journal from MDPI, 12(15): 2004. https://doi.org/10.3390/ani12152004 Kamimura Y., Nishikawa M., and Yamasako J., 2023, DNA barcoding of Japanese earwig species (Insecta, Dermaptera), with sequence diversity analyses of three species of Anisolabididae, Biodiversity Data Journal, 11: e107001. https://doi.org/10.3897/BDJ.11.e107001 Li L., Cushman S., He Y., Ma X., Ge X., Li J., Qian Z., and Li Y., 2020, Landscape genomics reveals genetic evidence of local adaptation in a widespread tree, the Chinese wingnut (Pterocarya stenoptera), Journal of Systematics and Evolution, 60(2): 386-397. https://doi.org/10.1111/jse.12699 Liu H., Chen S., Chen Q., Pu D., Chen Z., Liu Y., and Liu X., 2022, The first mitochondrial genomes of the family Haplodiplatyidae (Insecta: Dermaptera) reveal intraspecific variation and extensive gene rearrangement, Biology, 11(6): 807. https://doi.org/10.3390/biology11060807 Lu C., Huang S., Cheng S., Lin C., Hsu Y., Yao C., Dong F., Hung C., and Kuo H., 2023, Genomic architecture underlying morphological and physiological adaptation to high elevation in a songbird, Molecular Ecology, 32: 2234-2251. https://doi.org/10.1111/mec.16875 Ma D., Guo Z., Ding Q., Zhao Z., Shen Z., Wei M., Gao C., Zhang L., Li H., Zhang S., Li J., Zhu X., and Zheng H., 2021, Chromosome-level assembly of the mangrove plant Aegiceras corniculatum genome generated through Illumina, PacBio and Hi-C sequencing technologies, Molecular Ecology Resources, 21(5): 1593-1607.. https://doi.org/10.1111/1755-0998.13347 Manghwar H., Li B., Ding X., Hussain A., Lindsey K., Zhang X., and Jin S., 2020, CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects, Advanced Science, 7(6): 1902312. https://doi.org/10.1002/advs.201902312 Manghwar H., Lindsey K., Zhang X., and Jin S., 2019, CRISPR/Cas system: recent advances and future prospects for genome editing, Trends in Plant Science, 24(12): 1102-1125. https://doi.org/10.1016/j.tplants.2019.09.006 Meunier J., 2023, The biology and social life of earwigs (Dermaptera), Annual Review of Entomology, 69(1): 259-276. https://doi.org/10.1146/annurev-ento-013023-015632 Min T., Hwarari D., Li D., Movahedi A., and Yang L., 2022, CRISPR-based genome editing and its applications in woody plants, International Journal of Molecular Sciences, 23(17): 10175. https://doi.org/10.3390/ijms231710175 Núñez-Pascual V., Calleja F., Pardo R., Sarrazin A., and Irles P., 2022, The ring-legged earwig Euborellia annulipes as a new model for oogenesis and development studies in insects, Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution, 340(1): 18-33. https://doi.org/10.1002/jez.b.23121 Picq S., Lumley L., Šíchová J., Laroche J., Pouliot E., Brunet B., Lévesque R., Sperling F., Marec F., and Cusson M., 2018, Insights into the structure of the spruce budworm (Choristoneura fumiferana) genome, as revealed by molecular cytogenetic analyses and a high-density linkage map, G3: Genes|Genomes|Genetics, 8: 2539-2549. https://doi.org/10.1534/g3.118.200263 Rane R., Pearce S., Li F., Coppin C., Schiffer M., Shirriffs J., Sgrò C., Griffin P., Zhang G., Lee S., Hoffmann A., and Oakeshott J., 2019, Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species, BMC Genomics, 20: 1-22. https://doi.org/10.1186/s12864-018-5413-3 Rellstab C., Zoller S., Sailer C., Tedder A., Gugerli F., Shimizu K., Holderegger R., Widmer A., and Fischer M., 2020, Genomic signatures of convergent adaptation to Alpine environments in three Brassicaceae species, Molecular Ecology, 29: 4350-4365. https://doi.org/10.1111/mec.15648
RkJQdWJsaXNoZXIy MjQ4ODYzMg==