GAB_2024v15n5

Genomics and Applied Biology 2024, Vol.15, No.5, 223-234 http://bioscipublisher.com/index.php/gab 233 Hesami M., Pepe M., Alizadeh M., Rakei A., Baiton A., and Jones A., 2020, Recent advances in cannabis biotechnology, Industrial Crops and Products, 158: 113026. https://doi.org/10.1016/j.indcrop.2020.113026 Hurgobin B., Tamiru-Oli M., Welling M., Doblin M., Bacic A., Whelan J., and Lewsey M., 2020, Recent advances in Cannabis sativa genomics research, The New Phytologist, 230: 73-89. https://doi.org/10.1111/nph.17140 Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., and Venkataraman G., 2018, CRISPR for crop improvement: an update review, Frontiers in Plant Science, 9: 985. https://doi.org/10.3389/fpls.2018.00985 Jain M., Koren S., Miga K., Quick J., Rand A., Sasani T., Tyson J., Beggs A., Dilthey A., Fiddes I., Malla S., Marriott H., Nieto T., O'Grady J., Olsen H., Pedersen B., Rhie A., Richardson H., Quinlan A., Snutch T., Tee L., Paten B., Phillippy A., Simpson J., Loman N., and Loose M., 2017, Nanopore sequencing and assembly of a human genome with ultra-long reads, Nature Biotechnology, 36: 338-345. https://doi.org/10.1038/nbt.4060 Kahn S., 2011, On the future of genomic data, Science, 331: 728-729. https://doi.org/10.1126/science.1197891 Kircher M., and Kelso J., 2010, High-throughput DNA sequencing - concepts and limitations, BioEssays, 32(6): 524-536. https://doi.org/10.1002/bies.200900181 Kovalchuk I., Pellino M., Rigault P., Velzen R., Ebersbach J., Ashnest J., Mau M., Schranz M., Alcorn J., Laprairie R., Laprairie R., McKay J., Burbridge C., Schneider D., Vergara D., Kane N., and Sharbel T., 2020, The genomics of cannabis and its close relatives, Annual Review of Plant Biology, 71(1): 713-739. https://doi.org/10.1146/annurev-arplant-081519-040203 Lang D., Zhang S., Ren P., Liang F., Sun Z., Meng G., Tan Y., Li X., Lai Q., Han L., Wang D., Hu F., Wang W., and Liu S., 2020, Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore, GigaScience, 9(12): giaa123. https://doi.org/10.1093/gigascience/giaa123 Laverty K., Stout J., Sullivan M., Shah H., Gill N., Holbrook L., Deikus G., Sebra R., Hughes T., Page J., and Bakel H., 2018, A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci, Genome Research, 29: 146-156. https://doi.org/10.1101/gr.242594.118 Li C., Lin F., An D., Wang W., and Huang R., 2017, Genome sequencing and assembly by long reads in plants, Genes, 9(1): 6. https://doi.org/10.3390/genes9010006 Liu H., Hu H., Tang K., Rehman M., Du G., Huang Y., and Liu F., 2022, Overexpressing hemp salt stress induced transcription factor genes enhances tobacco salt tolerance, Industrial Crops and Products, 177: 114497. https://doi.org/10.1016/j.indcrop.2021.114497 Lu H., Giordano F., and Ning Z., 2016, Oxford nanopore MinION sequencing and genome assembly, Genomics, Proteomics and Bioinformatics, 14: 265-279. https://doi.org/10.1016/j.gpb.2016.05.004 Matchett-Oates L., Braich S., Spangenberg G., Rochfort S., and Cogan N., 2021, In silico analysis enabling informed design for genome editing in medicinal cannabis; gene families and variant characterisation, PLoS ONE, 16(9): e0257413. https://doi.org/10.1371/journal.pone.0257413 Murigneux V., Rai S., Furtado A., Bruxner T., Tian W., Ye Q., Wei H., Yang B., Harliwong I., Anderson E., Mao Q., Drmanac R., Wang O., Peters B., Xu M., Wu P., Topp B., Coin L., and Henry R., 2020, Comparison of long-read methods for sequencing and assembly of a plant genome, GigaScience, 9(12): giaa146. https://doi.org/10.1093/gigascience/giaa146 Nascimento F., Rocha A., Soares J., Mascarenhas M., Ferreira M., Lino L., Ramos A., Diniz L., Mendes T., Ferreira C., Santos-Serejo J., and Amorim E., 2023, Gene editing for plant resistance to abiotic factors: a systematic review, Plants, 12(2): 305. https://doi.org/10.3390/plants12020305 Nurk S., Walenz B., Rhie A., Vollger M., Logsdon G., Grothe R., Miga K., Eichler E., Phillippy A., and Koren S., 2020, HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads, Genome Research, 30: 1291-1305. https://doi.org/10.1101/gr.263566.120 Pan G., Li Z., Huang S., Tao J., Shi Y., Chen A., Li J., Tang H., Chang L., Deng Y., Li D., and Zhao L., 2021, Genome-wide development of insertion-deletion (InDel) markers for Cannabis and its uses in genetic structure analysis of Chinese germplasm and sex-linked marker identification, BMC Genomics, 22: 1-12. https://doi.org/10.1186/s12864-021-07883-w Reece A., and Hulse G., 2023, Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics, Frontiers in Psychiatry, 14: 1182535. https://doi.org/10.3389/fpsyt.2023.1182535 Ren G., Zhang X., Li Y., Ridout K., Serrano-Serrano M., Yang Y., Liu A., Ravikanth G., Nawaz M., Mumtaz A., Salamin N., and Fumagalli L., 2021, Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa, Science Advances, 7(29): eabg2286. https://doi.org/10.1126/sciadv.abg2286

RkJQdWJsaXNoZXIy MjQ4ODYzMg==