GAB_2024v15n4

Genomics and Applied Biology 2024, Vol.15, No.4, 212-222 http://bioscipublisher.com/index.php/gab 220 GWAS has emerged as a powerful tool for dissecting the genetic basis of complex traits in Fabaceae, contributing to significant advancements in crop improvement. The ability to identify and utilize genetic variants associated with important agronomic traits has the potential to revolutionize breeding programs, leading to the development of high-yielding, resilient, and nutritionally enhanced Fabaceae crops. However, challenges such as population structure, linkage disequilibrium, and the need for large sample sizes must be addressed to fully harness the potential of GWAS. Continued advancements in genomic technologies and statistical methods will undoubtedly enhance the resolution and accuracy of GWAS, paving the way for more effective and sustainable crop improvement strategies in Fabaceae. Acknowledgments The author appreciates the feedback from two anonymous peer reviewers on the manuscript of this study, whose careful evaluation and constructive suggestions have contributed to the improvement of the manuscript. Conflict of Interest Disclosure The author affirms that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Barsh G., Copenhaver G., Gibson G., and Williams S., 2012, Guidelines for genome-wide association studies, PLoS Genetics, 8(7): e1002812. https://doi.org/10.1371/journal.pgen.1002812 Battenfield S., Sheridan J., Silva L., Miclaus K., Dreisigacker S., Wolfinger R., Peña R., Singh R., Jackson E., Fritz A., Guzmán C., and Poland J., 2018, Breeding-assisted genomics: Applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program, PLoS ONE, 13(11): e0204757. https://doi.org/10.1371/journal.pone.0204757 Bhattacharya A., Li Y., and Love M., 2020, MOSTWAS: multi-omic strategies for transcriptome-wide association studies, PLoS Genetics, 17(3): e1009398. https://doi.org/10.1371/journal.pgen.1009398 Bruneau A., Doyle J., Herendeen P., Hughes C., Kenicer G., Lewis G., Mackinder B., Pennington R., Sanderson M., Wojciechowski M., Boatwright S., Brown G., Cardoso D., Crisp M., Egan A., Fortunato R., Hawkins J., Kajita T., Klitgaard B., Koenen E., Lavin M., Luckow M., Marazzi B., McMahon M., Miller J., Murphy D., Ohashi H., Queiroz L., Rico L., Särkinen T., Schrire B., Simon M., Souza É., Steele K., Torke B., Wieringa J., and Wyk B., 2013, Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades, Taxon, 62: 217-248. https://doi.org/10.12705/622.8 Buniello A., MacArthur J., Cerezo M., Harris L., Hayhurst J., Malangone C., McMahon A., Morales J., Mountjoy E., Sollis E., Suveges D., Vrousgou O., Whetzel P., Amode R., Guillen J., Riat H., Trevanion S., Hall P., Junkins H., Flicek P., Burdett T., Hindorff L., Cunningham F., and Parkinson H., 2018, The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019, Nucleic Acids Research, 47: D1005-D1012. https://doi.org/10.1093/nar/gky1120 Burghardt L., Young N., and Tiffin P., 2017, A guide to genome-wide association mapping in plants, Current Protocols in Plant Biology, 2(1): 22-38. https://doi.org/10.1002/cppb.20041 Cortes L., Zhang Z., and Yu J., 2021, Status and prospects of genome-wide association studies in plants, The Plant Genome, 14(1): e20077. https://doi.org/10.1002/tpg2.20077 Gali K., Sackville A., Tafesse E., Lachagari V., Mcphee K., Hybl M., Mikić A., Smýkal P., McGee R., Burstin J., Domoney C., Ellis T., Tar'an B., and Warkentin T., 2019, Genome-wide association mapping for agronomic and seed quality traits of field pea (Pisum sativumL.), Frontiers in Plant Science, 10: 1538. https://doi.org/10.3389/fpls.2019.01538 Garreta L., Cerón-Souza I., Palacio M., and Reyes-Herrera P., 2020, MultiGWAS: an integrative tool for genome wide association studies in tetraploid organisms, Ecology and Evolution, 11: 7411-7426. https://doi.org/10.1002/ece3.7572 Jha U., Nayyar H., Parida S., Bakır M., Wettberg E., and Siddique K., 2022, Progress of genomics-driven approaches for sustaining underutilized legume crops in the post-genomic era, Frontiers in Genetics, 13: 831656. https://doi.org/10.3389/fgene.2022.831656 Jishtu V., and Goraya G., 2020, Leguminosae (nom. alt. Fabaceae)-its diversity, use and role in environmental conservation in the Harsh environs of the cold deserts of north-west India, In: Hasanuzzaman, M., Araújo S., Gill S. (eds), The Plant Family Fabaceae, Springer, Singapore, pp.261-285. https://doi.org/10.1007/978-981-15-4752-2_10 Kim D., Lyu J., Kim J., Seo J., Choi H., Jo Y., Kim S., Eom S., Ahn J., Bae C., and Kwon S., 2022, Identification of loci governing agronomic traits and mutation hotspots via a GBS-based genome-wide association study in a soybean mutant diversity pool, International Journal of Molecular Sciences, 23(18): 10441. https://doi.org/10.3390/ijms231810441

RkJQdWJsaXNoZXIy MjQ4ODYzMg==