GAB_2024v15n4

Genomics and Applied Biology 2024, Vol.15, No.4, 172-181 http://bioscipublisher.com/index.php/gab 180 Chenoweth M., Giacomini K., Pirmohamed M., Hill S., Schaik R., Schwab M., Shuldiner A., Relling M., and Tyndale R., 2019, Global pharmacogenomics within precision medicine: challenges and opportunities, Clinical Pharmacology and Therapeutics, 107(1): 57-61. https://doi.org/10.1002/cpt.1664 Consortium T., 2016, Computational pan-genomics: status, promises and challenges, Briefings in Bioinformatics, 19: 118-135. https://doi.org/10.1101/043430 Cortes L., Zhang Z., and Yu J., 2021, Status and prospects of genome-wide association studies in plants, The Plant Genome, 14(1): e20077. https://doi.org/10.1002/tpg2.20077 Davis-Turak J., Courtney S., Hazard E., Glen W., Silveira W., Wesselman T., Harbin L., Wolf B., Chung D., and Hardiman G., 2017, Genomics pipelines and data integration: challenges and opportunities in the research setting, Expert Review of Molecular Diagnostics, 17: 225-237. https://doi.org/10.1080/14737159.2017.1282822 Duggal P., Ladd-Acosta C., Ray D., and Beaty T., 2019, The evolving field of genetic epidemiology: from familial aggregation to genomic sequencing, American Journal of Epidemiology, 188: 2069-2077. https://doi.org/10.1093/aje/kwz193 Feldner-Busztin D., Nisantzis P., Edmunds S., Boza G., Racimo F., Gopalakrishnan S., Limborg M., Lahti L., and Polavieja G., 2023, Dealing with dimensionality: the application of machine learning to multi-omics data, Bioinformatics, 39(2): btad021. https://doi.org/10.1093/bioinformatics/btad021 Godard B., Marshall J., and Laberge C., 2007, Community engagement in genetic research: results of the first public consultation for the Quebec CARTaGENE project, Commun Genetics, 10(3): 147-158. https://doi.org/10.1159/000101756 Gupta P., 2021, GWAS for genetics of complex quantitative traits: Genome to pangenome and SNPs to SVs and k-mers, BioEssays, 43(11): 2100109. https://doi.org/10.1002/bies.202100109 He K., Ge D., and He M., 2017, Big data analytics for genomic medicine, International Journal of Molecular Sciences, 18(2): 412. https://doi.org/10.3390/ijms18020412 Khanzadeh H., Hosseinzadeh N., and Ghovvati S., 2020, Genome wide association studies, next generation sequencing and their application in animal breeding and genetics: a review, Iranian Journal of Applied Animal Science, 10: 395-404. Khoury M., and Holt K., 2021, The impact of genomics on precision public health: beyond the pandemic, Genome Medicine, 13(1): 67. https://doi.org/10.1186/s13073-021-00886-y Kosvyra A., Maramis C., and Chouvarda I., 2019, Developing an integrated genomic profile for cancer patients with the use of NGS data, Emerging Science Journal, 3(3): 157-167. https://doi.org/10.28991/esj-2019-01178 Kosvyra A., Maramis C., and Chouvarda I., 2020, A data-driven approach to build a predictive model of cancer patients' disease outcome by utilizing co-expression networks, Computers in biology and medicine, 125: 103971. https://doi.org/10.1016/j.compbiomed.2020.103971 Koumakis L., 2020, Deep learning models in genomics; are we there yet? Computational and Structural Biotechnology Journal, 18: 1466-1473. https://doi.org/10.1016/j.csbj.2020.06.017 Li Y., Wu F., and Ngom A., 2016, A review on machine learning principles for multi-view biological data integration, Briefings in Bioinformatics, 19: 325-340. https://doi.org/10.1093/bib/bbw113 Liu H., and Guo G., 2016, Opportunities and challenges of big data for the social sciences: The case of genomic data, Social Science Research, 59: 13-22. https://doi.org/10.1016/j.ssresearch.2016.04.016 Liu H., and Yan J., 2018, Crop genome-wide association study: a harvest of biological relevance, The Plant Journal, 97: 8-18. https://doi.org/10.1111/tpj.14139 Mandrekar J., and Mandrekar S., 2009, Biostatistics: a toolkit for exploration, validation, and interpretation of clinical data, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 4(12): 1447-1449. https://doi.org/10.1097/JTO.0b013e3181c0a329 Mann M., Kumar C., Zeng W., and Strauss M., 2021, Artificial intelligence for proteomics and biomarker discovery, Cell Systems, 12(8): 759-770. https://doi.org/10.1016/j.cels.2021.06.006 Manzoni C., Kia D., Vandrovcova J., Hardy J., Wood N., Lewis P., and Ferrari R., 2016, Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences, Briefings in Bioinformatics, 19: 286-302. https://doi.org/10.1093/bib/bbw114 McCarthy J., McLeod H., and Ginsburg G., 2013, Genomic medicine: a decade of successes, challenges, and opportunities, Science Translational Medicine, 5: 189sr4-189sr4. https://doi.org/10.1126/scitranslmed.3005785 Mirza B., Wang W., Wang J., Choi H., Chung N., and Ping P., 2019, Machine learning and integrative analysis of biomedical big data, Genes, 10(2): 87. https://doi.org/10.3390/genes10020087 Müller B., Filho J., Lima B., Garcia C., Missiaggia A., Aguiar A., Takahashi E., Kirst M., Gezan S., Silva-Junior O., Neves L., and Grattapaglia D., 2018, Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations, The New phytologist, 221(2): 818-833. https://doi.org/10.1111/nph.15449

RkJQdWJsaXNoZXIy MjQ4ODYzMg==