Genomics and Applied Biology 2024, Vol.15, No.3, 162-171 http://bioscipublisher.com/index.php/gab 171 Sandhu K., Shiv A., Kaur G., Meena M., Raja A., Vengavasi K., Mall A., Kumar S., Singh P., Singh J., Hemaprabha G., Pathak A., Krishnappa G., and Kumar S., 2022, Integrated approach in genomic selection to accelerate genetic gain in sugarcane, Plants, 11(16): 2139. https://doi.org/10.3390/plants11162139 Sathasivam R., Radhakrishnan R., Hashem A., and Abd_Allah E., 2017, Microalgae metabolites: A rich source for food and medicine, Saudi Journal of Biological Sciences, 26: 709-722. https://doi.org/10.1016/j.sjbs.2017.11.003 Sreenikethanam A., Raj S., J., R., Gugulothu P., and Bajhaiya A., 2022, Genetic engineering of microalgae for secondary metabolite production: recent developments, challenges, and future prospects, Frontiers in Bioengineering and Biotechnology, 10: 836056. https://doi.org/10.3389/fbioe.2022.836056 Teagle H., Hawkins S., Moore P., and Smale D., 2017, The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492: 81-98. https://doi.org/10.1016/j.jembe.2017.01.017 Teng S., Yew G., Sukačová K., Show P., Máša V., and Chang J., 2020, Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products, Biotechnology Advances, 44: 107631. https://doi.org/10.1016/j.biotechadv.2020.107631 Torres-Tiji Y., Fields F., and Mayfield S., 2020, Microalgae as a future food source, Biotechnology advances, 41:. 107536. https://doi.org/10.1016/j.biotechadv.2020.107536 Trovão M., Schüler L., Machado A., Bombo G., Navalho S., Barros A., Pereira H., Silva J., Freitas F., and Varela J., 2022, Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production, Marine Drugs, 20(7): 440. https://doi.org/10.3390/md20070440 Wang X., Yang X., Yao J., Li Q., Lu C., and Duan D., 2023, Genetic linkage map construction and QTL mapping of blade length and width in Saccharina japonica using SSR and SNP markers, Frontiers in Marine Science, 10: 1116412. https://doi.org/10.3389/fmars.2023.1116412 Weigel B., Miranda K., Fogarty E., Watson A., and Pfister C., 2022, Functional insights into the kelp microbiome from metagenome-assembled genomes, mSystems, 7(3): e01422-21. https://doi.org/10.1128/msystems.01422-21 Zhang J., Wang X., Yao J., Li Q., Liu F., Yotsukura N., Krupnova T., and Duan D., 2017, Effect of domestication on the genetic diversity and structure of Saccharina japonica populations in China, Scientific Reports, 7(1): 42158. https://doi.org/10.1038/srep42158 Zhang N., Zhang L., Tao Y., Guo L., Sun J., Li X., Zhao N., Peng J., Li X., Zeng L., Chen J., and Yang G., 2015, Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus, BMC Genomics, 16: 1-11. https://doi.org/10.1186/s12864-015-1371-1 Zhang Y., Jiang J., Shi T., Sun X., Zhao Q., Huang H., and Ren L., 2019, Application of the CRISPR/Cas system for genome editing in microalgae, Applied Microbiology and Biotechnology, 103: 3239-3248. https://doi.org/10.1007/s00253-019-09726-x Zhou H., He M., Li J., Chen L., Huang Z., Zheng S., Zhu L., Ni E., Jiang D., Zhao B., and Zhuang C., 2016, Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system, Scientific Reports, 6(1): 37395. https://doi.org/10.1038/srep37395
RkJQdWJsaXNoZXIy MjQ4ODYzMg==