GAB_2024v15n3

Genomics and Applied Biology 2024, Vol.15, No.3, 162-171 http://bioscipublisher.com/index.php/gab 170 Druehl L., Collins J., Lane C., and Saunders G., 2005, An evaluation of methods used to assess intergeneric hybridization in kelp using pacific laminariales (phaeophyceae)1, Journal of Phycology, 41(2): 250-262. https://doi.org/10.1111/j.1529-8817.2005.04143.x Fayyaz M., Chew K., Show P., Ling T., Ng I., and Chang J., 2020, Genetic engineering of microalgae for enhanced biorefinery capabilities, Biotechnology Advances, 43: 107554. https://doi.org/10.1016/j.biotechadv.2020.107554 Goecke F., Klemetsdal G., and Ergon Å., 2020, Cultivar development of kelps for commercial cultivation-past lessons and future prospects, Frontiers in Marine Science, 8: 110. https://doi.org/10.3389/fmars.2020.00110 Gratacap R., Wargelius A., Edvardsen R., and Houston R., 2019, Potential of genome editing to improve aquaculture breeding and production, Trends in Genetics : TIG, 35(9): 672-684. https://doi.org/10.1016/j.tig.2019.06.006 Grattapaglia D., Silva-Junior O., Resende R., Cappa E., Müller B., Tan B., Isik F., Ratcliffe B., and El-Kassaby Y., 2018, Quantitative genetics and genomics converge to accelerate forest tree breeding, Frontiers in Plant Science, 9: 1693. https://doi.org/10.3389/fpls.2018.01693 Hlavová M., Turóczy Z., and Bišová K., 2015, Improving microalgae for biotechnology--From genetics to synthetic biology, Biotechnology Advances, 33(6 Pt 2): 1194-1203. https://doi.org/10.1016/j.biotechadv.2015.01.009 Hu Z., Shan T., Zhang Q., Liu F., Jueterbock A., Wang G., Sun Z., Wang X., Chen W., Critchley A., and Ye N., 2023, Kelp breeding in China: Challenges and opportunities for solutions, Reviews in Aquaculture, 16(2): 855-871. https://doi.org/10.1111/raq.12871 Kumar G., Shekh A., Jakhu S., Sharma Y., Kapoor R., and Sharma T., 2020, Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application, Frontiers in Bioengineering and Biotechnology, 8: 914. https://doi.org/10.3389/fbioe.2020.00914 Kuo E., Yang R., Chin Y., Chien Y., Chen Y., Wei C., Kao L., Chang Y., Li Y., Chen T., and Lee T., 2022, Multiomics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae, Biotechnology Journal, 17(8): 2100603. https://doi.org/10.1002/biot.202100603 Li X., Zhang Z., Qu S., Liang G., Sun J., Zhao N., Cui C., Cao Z., Li Y., Pan J., Yu S., Wang Q., Li X., Luo S., Song S., Guo L., and Yang G., 2016, Improving seedless kelp (Saccharina japonica) during its domestication by hybridizing gametophytes and seedling-raising from sporophytes, Scientific Reports, 6(1): 21255. https://doi.org/10.1038/srep21255 Mao X., Augyte S., Huang M., Hare M., Bailey D., Umanzor S., Marty-Rivera M., Robbins K., Yarish C., Lindell S., and Jannink J., 2020, Population genetics of sugar kelp throughout the northeastern United States using genome-wide markers, 7: 694. https://doi.org/10.3389/fmars.2020.00694 Martins N., Pearson G., Gouveia L., Tavares A., Serrão E., and Bartsch I., 2019, Hybrid vigour for thermal tolerance in hybrids between the allopatric kelps Laminaria digitata and L. pallida (Laminariales, Phaeophyceae) with contrasting thermal affinities, European Journal of Phycology, 54: 548-561. https://doi.org/10.1080/09670262.2019.1613571 Meuwissen T., Hayes B., and Goddard M., 2016, Genomic selection: A paradigm shift in animal breeding, Animal Frontiers, 6: 6-14. https://doi.org/10.2527/af.2016-0002 Mooney K., Beatty G., Elsässer B., Follis E., Kregting L., O'Connor N., Riddell G., and Provan J., 2018, Hierarchical structuring of genetic variation at differing geographic scales in the cultivated sugar kelp Saccharina latissima, Marine Environmental Research, 142: 108-115. https://doi.org/10.1016/j.marenvres.2018.09.029 Muñoz C., Südfeld C., Naduthodi M., Weusthuis R., Barbosa M., Wijffels R., and D'Adamo S., 2021, Genetic engineering of microalgae for enhanced lipid production, Biotechnology Advances, 52: 107836. https://doi.org/10.1016/j.biotechadv.2021.107836 Murúa P., Edrada-Ebel R., Muñoz L., Soldatou S., Legrave N., Müller D., Patiño D., West P., Küpper F., Westermeier R., Ebel R., and Peters A., 2020, Morphological, genotypic and metabolomic signatures confirm interfamilial hybridization between the ubiquitous kelps Macrocystis (Arthrothamnaceae) and Lessonia (Lessoniaceae), Scientific Reports, 10(1): 8279. https://doi.org/10.1038/s41598-020-68820-7 Murúa P., Patiño D., Müller D., and Westermeier R., 2021, Sexual compatibility in giant kelp gametophytes: inter-cultivar hybridization is average between parents but excels under harsher conditions, Journal of Applied Phycology, 33: 3261-3275. https://doi.org/10.1007/s10811-021-02506-z Ng I., Tan S., Kao P., Chang Y., and Chang J., 2017, Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals, Biotechnology Journal, 12(10): 1600644. https://doi.org/10.1002/biot.201600644 Salama E., Govindwar S., Khandare R., Roh H., Jeon B., and Li X., 2019, Can omics approaches improve microalgal biofuels under abiotic stress? Trends in Plant Science, 24(7): 611-624. https://doi.org/10.1016/j.tplants.2019.04.001

RkJQdWJsaXNoZXIy MjQ4ODYzMg==