Genomics and Applied Biology 2024, Vol.15, No.3, 153-161 http://bioscipublisher.com/index.php/gab 160 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Akhter Z., Bi Z., Ali K., Sun C., Fiaz S., Haider F., and Bai J., 2021, In response to abiotic stress, DNA methylation confers epigenetic changes in plants, Plants, 10(6): 1096. https://doi.org/10.3390/plants10061096 Brukhin V., and Albertini E., 2021, Epigenetic modifications in plant development and reproduction, Epigenomes, 5(4): 25. https://doi.org/10.3390/epigenomes5040025 Bure I., Nemtsova M., and Kuznetsova E., 2022, Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis, International Journal of Molecular Sciences, 23(10): 5801. https://doi.org/10.3390/ijms23105801 Chang Y., Zhu C., Jiang J., Zhang H., Zhu J., and Duan C., 2019, Epigenetic regulation in plant abiotic stress responses, Journal of Integrative Plant Biology, 62(5): 563-580. https://doi.org/10.1111/jipb.12901 Cheng Y., He C., Wang M., Ma X., Mo F., Yang S., Han J., and Wei X., 2019, Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials, Signal Transduction and Targeted Therapy, 4(1): 62. https://doi.org/10.1038/s41392-019-0095-0 Davalos V., and Esteller M., 2022, Cancer epigenetics in clinical practice, CA: A Cancer Journal for Clinicians, 73: 376-424. https://doi.org/10.3322/caac.21765 García-Giménez J., Garcés C., Romá-Mateo C., and Pallardó F., 2021, Special issue "Redox regulation of the epigenetic landscape" "Oxidative stress-mediated alterations in histone post-translational modifications", Free Radical Biology and Medicine, 170: 6-18. https://doi.org/10.1016/j.freeradbiomed.2021.02.027 Gray J., Wani S., and Campbell M., 2022, Epigenomic alterations in cancer: mechanisms and therapeutic potential, Clinical Science, 136(7): 473-492. https://doi.org/10.1042/CS20210449 Guo L., Cheng Z., Qin J., Sun D., Wang S., Wu Q., Crickmore N., Zhou X., Bravo A., Soberón M., Guo Z., and Zhang Y., 2022, MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALPexpression, PLoS Genetics, 18(2): e1010037. https://doi.org/10.1371/journal.pgen.1010037 Gus J., Ye R., Xu Y., Yin Y., Li S., and Chen H., 2021, A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins, Microchemical Journal, 165: 106137. https://doi.org/10.1016/j.microc.2021.106137 Han M., Jia L., Lv W., Wang L., and Cui W., 2019, Epigenetic enzyme mutations: role in tumorigenesis and molecular inhibitors, Frontiers in Oncology, 9: 194. https://doi.org/10.3389/fonc.2019.00194 Han X., and Huang Q., 2021, Environmental pollutants exposure and male reproductive toxicity: the role of epigenetic modifications, Toxicology, 456: 152780. https://doi.org/10.1016/j.tox.2021.152780 Huang H., Weng H., and Chen J., 2020, m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer, Cancer Cell, 37(3): 270-288. https://doi.org/10.1016/j.ccell.2020.02.004 Ji J., Jing A., Geng T., Ma X., Liu W., and Liu B., 2023, Editorial: Protein modifications in epigenetic dysfunctional diseases: mechanisms and potential therapeutic strategies, Frontiers in Cell and Developmental Biology, 11: 1216637. https://doi.org/10.3389/fcell.2023.1216637 Jin N., George T., Otterson G., Verschraegen C., Wen H., Carbone D., Herman J., Bertino E., and He K., 2021, Advances in epigenetic therapeutics with focus on solid tumors, Clinical Epigenetics, 13: 1-27. https://doi.org/10.1186/s13148-021-01069-7 Kan R., Chen J., and Sallam T., 2021, Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation, Trends in Genetics : TIG, 38: 182-193. https://doi.org/10.1016/j.tig.2021.06.014 Kumar S., and Mohapatra T., 2021, Dynamics of DNA methylation and its functions in plant growth and development, Frontiers in Plant Science, 12: 596236. https://doi.org/10.3389/fpls.2021.596236 Lempiäinen J., and Garcia B., 2023, Characterizing crosstalk in epigenetic signaling to understand disease physiology, The Biochemical Journal, 480(1): 57-85. https://doi.org/10.1042/BCJ20220550 Liang Z., Ali Q., Wang Y., Mu G., Kan X., Ren Y., Manghwar H., Gu Q., Wu H., and Gao X., 2022, Toxicity of Bacillus thuringiensis strains derived from the novel crystal protein Cry31Aa with high nematicidal activity against rice parasitic nematode Aphelenchoides besseyi, International Journal of Molecular Sciences, 23(15): 8189. https://doi.org/10.3390/ijms23158189 Liu L., Knauth S., Wu L., and Eickhorst T., 2019, Cry1Ab/Ac proteins released from subspecies of Bacillus thuringiensis (Bt) and transgenic Bt-rice in different paddy soils, Archives of Agronomy and Soil Science, 66: 1546-1555. https://doi.org/10.1080/03650340.2019.1681587
RkJQdWJsaXNoZXIy MjQ4ODYzMg==