Genomics and Applied Biology 2024, Vol.15, No.3, 142-152 http://bioscipublisher.com/index.php/gab 151 Kumar R., Jorben J., Yadav R., and Senapati M., 2020, Genomics and its application in crop improvement, Journal of Pharmacognosy and Phytochemistry, 9(1): 547-552. https://doi.org/10.22271/phyto.2020.v9.i1i.10488 Li Y., Liang J., Deng B., Jiang Y., Zhu J., Chen L., Li M., and Li J., 2023, Applications and prospects of CRISPR/Cas9-mediated base editing in plant breeding, Current Issues in Molecular Biology, 45(2): 918-935. https://doi.org/10.3390/cimb45020059 Li Y., Wang D., Li Z., Wei J., Jin C., and Liu M., 2014, A molecular genetic linkage map of Eucommia ulmoides and quantitative trait loci (QTL) analysis for growth traits, International Journal of Molecular Sciences, 15(2): 2053-2074. https://doi.org/10.3390/ijms15022053 Li Y., Wei H., Yang J., Du K., Li J., Zhang Y., Qiu T., Liu Z., Ren Y., Song L., and Kang X., 2020, High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis, Horticulture Research, 7(1): 183. https://doi.org/10.1038/s41438-020-00406-w Liu C., Wang L., Lu W., Zhong J., Du H., Liu P., Du Q., Du L., and Qing J., 2022, Construction of SNP-Based high-density genetic map using genotyping by sequencing (GBS) and QTL analysis of growth traits in Eucommia ulmoides Oliv, Forests, 13(9): 1479-1479. https://doi.org/10.3390/f13091479 Liu H., Fu J., Du H., Hu J., and Wuyun T., 2016, De novo sequencing of Eucommia ulmoides flower bud transcriptomes for identification of genes related to floral development, Genomics Data, 9: 105-110. https://doi.org/10.1016/j.gdata.2016.07.001 Merrick L., Herr A., Sandhu K., Lozada D., and Carter A., 2022, Optimizing plant breeding programs for genomic selection, Agronomy. 12(3): 714-714. https://doi.org/10.3390/agronomy12030714 Poland J., 2015, Breeding-assisted genomics, Current opinion in plant biology, 24: 119-124. https://doi.org/10.1016/j.pbi.2015.02.009 Rao M., and Wang L., 2021, CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture, Planta, 254(4): 68. https://doi.org/10.1007/s00425-021-03716-y Rodriguez-Leal D., Lemmon Z., Man J., Bartlett M., and Lippman Z., 2017, Engineering quantitative trait variation for crop improvement by genome editing, Cell, 171(2): 470-480. https://doi.org/10.1016/j.cell.2017.08.030 Salgotra R., and Stewart C., 2020, Functional markers for precision plant breeding, International Journal of Molecular Sciences, 21(13): 4792. https://doi.org/10.3390/ijms21134792 Tchounke B., Sanchez L., Bell J., and Cros D., 2022, Mate selection: A useful approach to maximize genetic gain and control inbreeding in genomic and conventional oil palm (Elaeis guineensis Jacq.) hybrid breeding, PLOS Computational Biology, 19(9): e1010290. https://doi.org/10.1371/journal.pcbi.1010290 Varshney R., Graner A., and Sorrells M., 2005, Genomics-assisted breeding for crop improvement, Trends in Plant Science, 10(12): 621-630. https://doi.org/10.1016/j.tplants.2005.10.004 Varshney R., Roorkiwal M., and Sorrells M., 2017, Genomic selection for crop improvement, Crop Science, 49(1): 1-12. https://doi.org/10.2135/cropsci2008.08.0512 Wan L., Wang Z., Tang M., Hong D., Sun Y., Ren J., Zhang N., and Zeng H., 2021, CRISPR-Cas9 gene editing for fruit and vegetable crops: strategies and prospects, Horticulturae, 14(9): 1074. https://doi.org/10.3390/horticulturae7070193 Wang B., Zhu L., Zhao B., Zhao Y., Xie Y., Zheng Z., Li Y., Sun J., and Wang H., 2019, Development of a haploid-inducer mediated genome editing system for accelerating maize breeding, Molecular Plant, 12(4): 597-602. https://doi.org/10.1016/j.molp.2019.03.006 Wang D., Li Y., and Li Z., 2011, Identification of a male-specific amplified fragment length polymorphism (AFLP) and a sequence characterized amplified region (SCAR) marker in Eucommia ulmoides Oliv, International Journal of Molecular Sciences, 12(1): 857-864. https://doi.org/10.3390/ijms12010857 Wang W., Chen S., and Zhang X., 2018, Whole-genome comparison reveals heterogeneous divergence and mutation hotspots in chloroplast genome of Eucommia ulmoides Oliver, International Journal of Molecular Sciences, 19(4): 1037. https://doi.org/10.3390/ijms19041037 Wang W., Yang G., Deng X., Shao F., Li Y., Guo W., Liang H., and Zhang X., 2020, Molecular sex identification in the hardy rubber tree (Eucommia ulmoides Oliver) via ddRAD markers, International Journal of Genomics, pp.2420976. https://doi.org/10.1155/2020/2420976 Weckwerth W., Ghatak A., Bellaire A., Chaturvedi P., and Varshney R., 2020, PANOMICS meets germplasm, Plant Biotechnology Journal, 18(7): 1507-1525. https://doi.org/10.1111/pbi.13372 Zhang H., Zhang J., Lang Z., Botella J., and Zhu J., 2017, Genome editing-principles and applications for functional genomics research and crop improvement, Critical Reviews in Plant Sciences, 36(4): 291-309. https://doi.org/10.1080/07352689.2017.1402989
RkJQdWJsaXNoZXIy MjQ4ODYzMg==