Genomics and Applied Biology 2024, Vol.15, No.3, 132-141 http://bioscipublisher.com/index.php/gab 141 Qu W., Chen Z., Hu X., Zou T., Huang Y., Zhang Y., Hu Y., Tian S., Wan J., Liao R., Bai L., Xue J., Ding Y., Hu M., Zhang X., Zhang X., Zhao J., Cheng X., She Z., and Li H., 2022, Profound perturbation in the metabolome of a canine obesity and metabolic disorder model, Frontiers in Endocrinology, 13: 849060. https://doi.org/10.3389/fendo.2022.849060 Quijada N., Hernández M., and Rodríguez-Lázaro D., 2020, High-throughput sequencing and food microbiology, Advances in Food and Nutrition Research, 91: 275-300. https://doi.org/10.1016/bs.afnr.2019.10.003 Rahman A., Chakraborty S., and Kabir Y., 2020, Harnessing personalized nutrigenomics for cancer prevention and treatment through diet-gene interaction, Functional Foods in Cancer Prevention and Therapy, pp.387-403. https://doi.org/10.1016/B978-0-12-816151-7.00019-3 Rapkin J., Jensen K., House C., Wilson A., and Hunt J., 2018, Genotype-by-sex-by-diet interactions for nutritional preference, dietary consumption, and lipid deposition in a field cricket, Heredity, 121: 361-373. https://doi.org/10.1038/s41437-018-0130-x Rozga M., and Handu D., 2019, Nutritional Genomics in Precision Nutrition: An Evidence Analysis Center Scoping Review, Journal of the Academy of Nutrition and Dietetics, 119(3): 507-515. https://doi.org/10.1016/j.jand.2018.05.022 Samblas M., Milagro F., and Martínez A., 2019, DNA methylation markers in obesity, metabolic syndrome, and weight loss, Epigenetics, 14: 421-444. https://doi.org/10.1080/15592294.2019.1595297 Simopoulos A., 2019, 139 Nutrigenetics/Nutrigenomics: Nutrient-gene interactions in humans and animals, Journal of Animal Science, 97: 134-135. https://doi.org/10.1093/jas/skz258.274 Tan P., Moore J., Bai L., Tang G., and Gong Y., 2022, In the context of the triple burden of malnutrition: A systematic review of gene-diet interactions and nutritional status, Critical Reviews in Food Science and Nutrition, 64(11): 3235-3263. https://doi.org/10.1080/10408398.2022.2131727 Tvarijonaviciute A., Barić-Rafaj R., Horvatić A., Muñoz-Prieto A., Guillemin N., Lamy E., Tumpa A., Cerón J., Martínez-Subiela S., and Mrljak V., 2019, Identification of changes in serum analytes and possible metabolic pathways associated with canine obesity-related metabolic dysfunction, Veterinary Journal, 244: 51-59. https://doi.org/10.1016/j.tvjl.2018.12.006 Wilding C., 2018, The genetic basis of size in pet dogs: The study of quantitative genetic variation in an undergraduate laboratory practical, Biochemistry and Molecular Biology Education, 46(6): 623-629. https://doi.org/10.1002/bmb.21180 Yamazaki J., Meagawa S., Jelinek J., Yokoyama S., Nagata N., Yuki M., and Takiguchi M., 2021, Obese status is associated with accelerated DNA methylation change in peripheral blood of senior dogs, Research in Veterinary Science, 139: 193-199. https://doi.org/10.1016/j.rvsc.2021.07.024 Yang J., 2019, Cloud computing for storing and analyzing petabytes of genomic data, J. Ind. Inf. Integr., 15: 50-57. https://doi.org/10.1016/j.jii.2019.04.005
RkJQdWJsaXNoZXIy MjQ4ODYzMg==