Genomics and Applied Biology 2024, Vol.15, No.3, 132-141 http://bioscipublisher.com/index.php/gab 140 Bateman T., 2020, MicroRNAs as a potential biomarker in feline kidney disease, The FASEB Journal, 34(S1): 1. https://doi.org/10.1096/fasebj.2020.34.s1.09931 Bonner J., 2020, Nutrition and petcare, BSAVA Companion, 2020(7): 17-19. https://doi.org/10.22233/20412495.0720.17 Bordoni L., and Gabbianelli R., 2019, Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition, Biochimie, 160: 156-171. https://doi.org/10.1016/j.biochi.2019.03.006 Dougherty H., Evered M., Oltjen J., Hegarty R., Neutze S., and Oddy V., 2022, Effects of dietary energy density and supplemental rumen undegradable protein on intake, viscera, and carcass composition of lambs recovering from nutritional restriction, Journal of Animal Science, 100(7): skac158. https://doi.org/10.1093/jas/skac158 Fabretti A., Gomes L., Kemper D., Chaves R., Kemper B., and Pereira P., 2020, Clinical determination of the nutritional status of companion animals, Semina: Ciências Agrárias, 41(5): 1813-1830. https://doi.org/10.5433/1679-0359.2020v41n5p1813 Franzago M., Santurbano D., Vitacolonna E., and Stuppia L., 2020, Genes and diet in the prevention of chronic diseases in future generations, International Journal of Molecular Sciences, 21(7): 2633. https://doi.org/10.3390/ijms21072633 Gaillard C., Gauthier R., Cloutier L., and Dourmad J., 2019, Exploration of individual variability to better predict the nutrient requirements of gestating sows, Journal of Animal Science, 97(12): 4934-4945. https://doi.org/10.1093/jas/skz320 Garcia M., Schorr A., Arnold W., Fei N., and Gilbert J., 2019, Pets as a novel microbiome-based therapy, In: Pastorinho, M., Sousa, A. (eds), Pets as Sentinels, Forecasters and Promoters of Human Health, Springer, Cham, pp.245-267. https://doi.org/10.1007/978-3-030-30734-9_11 Giza A., Iwan E., and Wasyl D., 2022, Application of high throughput sequencing in veterinary science, Medycyna Weterynaryjna, 78(3): 115-120. https://doi.org/10.21521/mw.6622 Glaser C., Heinrich J., and Koletzko B., 2010, Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism, Metabolism, 59(7): 993-999. https://doi.org/10.1016/j.metabol.2009.10.022 Gutierrez D., Gant-Branum R., Romer C., Farrow M., Allen J., Dahal N., Nei Y., Codreanu S., Jordan A., Palmer L., Sherrod S., McLean J., Skaar E., Norris J., and Caprioli R., 2018, An integrated, high-throughput strategy for multiomic systems level analysis, Journal of Proteome Research, 17(10): 3396-3408. https://doi.org/10.1021/acs.jproteome.8b00302 Hasan M., Feugang J., and Liao S., 2019, A nutrigenomics approach using rna sequencing technology to study nutrient-gene interactions in agricultural animals, Current Developments in Nutrition, 3(8): nzz082. https://doi.org/10.1093/cdn/nzz082 Horton R., and Lucassen A., 2022, Ethical considerations in research with genomic data, The New Bioethics, 29: 37-51. https://doi.org/10.1080/20502877.2022.2060590 Lawson J., Liu H., Syme H., Purcell R., Wheeler-Jones C., and Elliott J., 2018, The cat as a naturally occurring model of renal interstitial fibrosis: Characterisation of primary feline proximal tubular epithelial cells and comparative pro-fibrotic effects of TGF-β1, PLoS ONE, 13(8): e0202577. https://doi.org/10.1371/journal.pone.0202577 Mondal S., and Panda D., 2020, Nutrigenomics: an interface of gene-diet-disease interaction. mineral deficiencies - genes, Diet and Disease Interface, pp.9-28. https://doi.org/10.5772/intechopen.94602 Moore J., 2020, From personalised nutrition to precision medicine: the rise of consumer genomics and digital health, Proceedings of the Nutrition Society, 79: 300-310. https://doi.org/10.1017/S0029665120006977 Mullins V., Bresette W., Johnstone L., Hallmark B., and Chilton F., 2020, Genomics in personalized nutrition: can you "eat for your genes"? Nutrients, 12(10): 3118. https://doi.org/10.3390/nu12103118 Nikas I., and Ryu H., 2022, The application of high-throughput proteomics in cytopathology, Journal of Pathology and Translational Medicine, 56: 309-318. https://doi.org/10.4132/jptm.2022.08.30 Opetz D., Beloshapka A., Oba P., Godoy M., and Swanson K., 2022, PSXI-4 use of foodomics analysis to biochemically compare different pet food ingredient categories, Journal of Animal Science, 100: 276. https://doi.org/10.1093/jas/skac247.502 Parker V., 2021, Nutritional management for dogs and cats with chronic kidney disease, The Veterinary Clinics of North America, Small Animal Practice, 51(3): 685-710. https://doi.org/10.1016/j.cvsm.2021.01.007 Phungviwatnikul T., Lee A., Belchik S., Suchodolski J., and Swanson K., 2021, Weight loss and high-protein, high-fiber diet consumption impact blood metabolite profiles, body composition, voluntary physical activity, fecal microbiota, and fecal metabolites of adult dogs, Journal of Animal Science, 100(2): skab379. https://doi.org/10.1093/jas/skab379
RkJQdWJsaXNoZXIy MjQ4ODYzMg==