Genomics and Applied Biology 2024, Vol.15, No.3, 120-131 http://bioscipublisher.com/index.php/gab 130 Maryan K., Farrokhi N., and Lahiji H., 2023, Cold-responsive transcription factors in Arabidopsis and rice: A regulatory network analysis using array data and gene co-expression network, PLoS ONE, 18(6): e0286324. https://doi.org/10.1371/journal.pone.0286324 Mazurier M., Drouaud J., Bahrman N., Rau A., Lejeune-Hénaut I., Delbreil B., and Legrand S., 2022, Integrated sRNA-seq and RNA-seq analyses reveal a microRNA regulation network involved in cold response in Pisum sativumL, Genes, 13(7): 1119. https://doi.org/10.3390/genes13071119 Meng Y., Shao C., Gou L., Jin Y., and Chen M., 2011, Construction of microRNA- and microRNA*-mediated regulatory networks in plants, RNA Biology, 8: 1124-1148. https://doi.org/10.4161/rna.8.6.17743 Park M., Yun K., Mohanty B., Herath V., Xu F., Wijaya E., Bajic V., Yun S., and Reyes B., 2010, Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development, Plant, Cell & Environment, 33(12): 2209-2230. https://doi.org/10.1111/j.1365-3040.2010.02221.x Qin J., Yan B., Hu Y., Wang P., and Wang J., 2016, Applications of integrative OMICs approaches to gene regulation studies, Quantitative Biology, 4: 283-301. https://doi.org/10.1007/s40484-016-0085-y Sharma N., Tripathi A., and Sanan-Mishra N., 2015, Profiling the expression domains of a rice-specific microRNA under stress, Frontiers in Plant Science, 6: 333. https://doi.org/10.3389/fpls.2015.00333 Sharma R., Upadhyay S., Bhat B., Singh G., Bhattacharya S., and Singh A., 2019, Abiotic stress induced miRNA-TF-gene regulatory network: A structural perspective, Genomics, 112(1): 412-422. https://doi.org/10.1016/j.ygeno.2019.03.004 Steinkraus B., Toegel M., and Fulga T., 2016, Tiny giants of gene regulation: experimental strategies for microRNA functional studies, Wiley Interdisciplinary Reviews, Developmental Biology, 5: 311-362. https://doi.org/10.1002/wdev.223 Su W., Kleinhanz R., and Schadt E., 2011, Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques, Molecular Systems Biology, 7: 490-490. https://doi.org/10.1038/msb.2011.23 Sun M., Shen Y., Chen Y., Wang Y., Cai X., Yang J., Jia B., Dong W., Chen X., and Sun X., 2022, Osa-miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA-mediated signaling, Plant physiology, 189(4): 2500-2516. https://doi.org/10.1093/plphys/kiac208 Wang R., Cheng Y., Ke X., Zhang X., Zhang H., and Huang J., 2019, Comparative analysis of salt responsive gene regulatory networks in rice and Arabidopsis, Computational Biology and Chemistry, 85: 107188. https://doi.org/10.1016/j.compbiolchem.2019.107188 Wilkins O., Hafemeister C., Plessis A., Holloway-Phillips M., Pham G., Nicotra A., Gregorio G., Jagadish S., Septiningsih E., Bonneau R., and Purugganan M., 2016, EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments, Plant Cell, 28: 2365-2384. https://doi.org/10.1105/tpc.16.00158 Wörheide M., Krumsiek J., Kastenmüller G., and Arnold M., 2021, Multi-omics integration in biomedical research - A metabolomics-centric review, Analytica Chimica Acta, 1141: 144-162. https://doi.org/10.1016/j.aca.2020.10.038 Yang W., Chen Y., Gao R., Chen Y., Zhou Y., Xie J., and Zhang F., 2023, MicroRNA2871b of Dongxiang wild rice (Oryza rufipogon Griff.) negatively regulates cold and salt stress tolerance in transgenic rice plants, International Journal of Molecular Sciences, 24(19): 14502. https://doi.org/10.3390/ijms241914502 Yang Y., Saand M., Huang L., Abdelaal W., Zhang J., Wu Y., Li J., Sirohi M., and Wang F., 2021, Applications of multi-omics technologies for crop improvement, Frontiers in Plant Science, 12: 563953. https://doi.org/10.3389/fpls.2021.563953 Zhang X., Wang W., Wang M., Zhang H., and Liu J., 2016, The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene-polyamine homeostasis, Plant & cell physiology, 57(9): 1865-1878. https://doi.org/10.1093/pcp/pcw108 Zhao W., Xiao W., Sun J., Chen M., Ma M., Cao Y., Cen W., Li R., and Luo J., 2022, An integration of MicroRNA and transcriptome sequencing analysis reveal regulatory roles of miRNAs in response to chilling stress in wild rice, Plants, 11(7): 977. https://doi.org/10.3390/plants11070977 Zheng L., and Qu L., 2015, Application of microRNA gene resources in the improvement of agronomic traits in rice, Plant Biotechnology Journal, 13(3): 329-336. https://doi.org/10.1111/pbi.12321 Zhou M., and Tang W., 2018, MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells, Molecular Genetics and Genomics, 294: 379-393. https://doi.org/10.1007/s00438-018-1516-4
RkJQdWJsaXNoZXIy MjQ4ODYzMg==