GAB_2024v15n3

Genomics and Applied Biology 2024, Vol.15, No.3, 120-131 http://bioscipublisher.com/index.php/gab 129 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Baldrich P., Campo S., Wu M., Liu T., Hsing Y., and Segundo B., 2015, MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors, RNA Biology, 12: 847-863. https://doi.org/10.1080/15476286.2015.1050577 Balyan S., Kumar M., Mutum R., Raghuvanshi U., Agarwal P., Mathur S., and Raghuvanshi S., 2017, Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22, Scientific Reports, 7(1): 15446. https://doi.org/10.1038/s41598-017-15450-1 Barrera-Figueroa B., Gao L., Wu Z., Zhou X., Zhu J., Jin H., Liu R., and Zhu J., 2012, High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice, BMC Plant Biology, 12: 132-132. https://doi.org/10.1186/1471-2229-12-132 Chaudhary S., Grover A., and Sharma P., 2021, MicroRNAs: potential targets for developing stress-tolerant crops, Life, 11(4): 289. https://doi.org/10.3390/life11040289 Cheng C., Yan K., Hwang W., Qian J., Bhardwaj N., Rozowsky J., Lu Z., Niu W., Alves P., Kato M., Snyder M., and Gerstein M., 2011, Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data, PLoS Computational Biology, 7(11): e1002190. https://doi.org/10.1371/journal.pcbi.1002190 Cohen S., and Leach J., 2019, Abiotic and biotic stresses induce a core transcriptome response in rice, Scientific Reports, 9(1): 6273. https://doi.org/10.1038/s41598-019-42731-8 Gosline S., Gurtan A., JnBaptiste C., Bosson A., Milani P., Dalin S., Matthews B., Yap Y., Sharp P., and Fraenkel E., 2015, Elucidating MicroRNA regulatory networks using transcriptional, post-transcriptional, and histone modification measurements, Cell Reports, 14(2): 310-319. https://doi.org/10.1016/j.celrep.2015.12.031 Guo Y., Alexander K., Clark A., Grimson A., and Yu H., 2016, Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs, RNA, 22: 1663-1672. https://doi.org/10.1261/rna.048025.114 Jiang J., Lyu P., Li J., Huang S., Blackshaw S., Qian J., and Wang J., 2022, IReNA: Integrated regulatory network analysis of single-cell transcriptomes and chromatin accessibility profiles, iScience, 25(11): 105359 https://doi.org/10.1016/j.isci.2022.105359 Jiang W., Shi W., Ma X., Zhao J., Wang S., Tan L., Sun C., and Liu F., 2019, Identification of microRNAs responding to cold stress in Dongxiang common wild rice, Genome, 62(9): 635-642. https://doi.org/10.1139/gen-2019-0015 Lai X., Wolkenhauer O., and Vera J., 2016, Understanding microRNA-mediated gene regulatory networks through mathematical modelling, Nucleic Acids Research, 44: 6019-6035. https://doi.org/10.1093/nar/gkw550 Le T., Liu L., Liu B., Tsykin A., Goodall G., Satou K., and Li J., 2013, Inferring microRNA and transcription factor regulatory networks in heterogeneous data, BMC Bioinformatics, 14: 92. https://doi.org/10.1186/1471-2105-14-92 Liu H., Able A., and Able J., 2020, Multi-Omics analysis of small RNA, transcriptome, and degradome in T. turgidum-regulatory networks of grain development and abiotic stress response, International Journal of Molecular Sciences, 21(20): 7772. https://doi.org/10.3390/ijms21207772 Liu H., Tian X., Li Y., Wu C., and Zheng C., 2008, Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana, RNA, 14(5): 836-843. https://doi.org/10.1261/rna.895308 Liu W, Cheng C, Chen F, Ni S, Lin Y, Lai Z.,2018, High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC Plant Biology, 18(1):308. https://doi.org/10.1186/s12870-018-1483-2 Lu Q., Xu Q., Guo F., Lv Y., Song C., Feng M., Yu J., Da Z., and Cang J., 2020, Identification and characterization of long non-coding RNAs as competing endogenous RNAs in the cold stress response of Triticum aestivum, Plant Biology, 22(4): 635-645. https://doi.org/10.1111/plb.13119 Lv D., Bai X., Li Y., Ding X., Ge Y., Cai H., Ji W., Wu N., and Zhu Y., 2010, Profiling of cold-stress-responsive miRNAs in rice by microarrays, Gene, 459: 1-2, 39-47. https://doi.org/10.1016/j.gene.2010.03.011 Martinez N., Ow M., Barrasa M., Hammell M., Sequerra R., Doucette-Stamm L., Roth F., Ambros V., and Walhout A., 2008, AC. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity, Genes & Development, 22(18): 2535-2549. https://doi.org/10.1101/gad.1678608

RkJQdWJsaXNoZXIy MjQ4ODYzMg==