GAB_2024v15n2

Genomics and Applied Biology 2024, Vol.15, No.2, 107-119 http://bioscipublisher.com/index.php/gab 118 Li M., Yang T., Kandul N., Bui M., Gamez S., Raban R., Bennett J.C.H., Lanzaro G., Schmidt H., Lee Y., Marshall J., and Akbari O., 2019, Development of a confinable gene drive system in the human disease vector Aedes aegypti, eLife, 9: 1-40. https://doi.org/10.1101/645440 Liu Y., Lillepold K., Semenza J., Tozan Y., Quam M., and Rocklöv J., 2020, Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones, Environmental Research, 182: 109114. https://doi.org/10.1016/j.envres.2020.109114 Lo I., and Matthews B., 2023, Design and validation of guide RNAs for CRISPR-Cas9 genome editing in mosquitoes, Cold Spring Harbor protocols, 10. https://doi.org/10.1101/pdb.top107688 Luo L., Wang J., and Wang L., 2023, Application and prospects of gene editing in mosquito-borne disease control, Theoretical and Natural Science, 8: 40-45. https://doi.org/10.54254/2753-8818/8/20240357 Macias V., McKeand S., Chaverra-Rodriguez D., Hughes G., Fazekas A., Pujhari S., Jasinskiene N., James A., and Rasgon J., 2019, Cas9-mediated gene-editing in the malaria mosquito anopheles stephensi by ReMOT control, G3: Genes|Genomes|Genetics, 10: 1353-1360. https://doi.org/10.1534/g3.120.401133 Manghwar H., Lindsey K., Zhang X., and Jin S., 2019, CRISPR/Cas system: recent advances and future prospects for genome editing, Trends in Plant Science, 24(12): 1102-1125. https://doi.org/10.1016/j.tplants.2019.09.006 Naeem M., Majeed S., Hoque M., and Ahmad I., 2020, Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing, Cells, 9(7): 1608. https://doi.org/10.3390/cells9071608 Naik N., Lo Y., Wu T., Lin C., Kuo S., and Chao Y., 2018, Baculovirus as an efficient vector for gene delivery into mosquitoes, Scientific Reports, 8: 17778. https://doi.org/10.1038/s41598-018-35463-8 Nolan T., 2020, Control of malaria-transmitting mosquitoes using gene drives, Philosophical Transactions of the Royal Society B, 376(1818): 20190803. https://doi.org/10.1098/rstb.2019.0803 Piperno A., Sciortino M., Giusto E., Montesi M., Panseri S., and Scala A., 2021, Recent advances and challenges in gene delivery mediated by polyester-based nanoparticles, International Journal of Nanomedicine, 16: 5981-6002. https://doi.org/10.2147/IJN.S321329 Riabinina O., Quinn M., and Whitehead J., 2022, Genetic toolbox approaches in mosquitoes, Cold Spring Harbor protocols. https://doi.org/10.1101/pdb.top107691 Rozen-Gagnon K., Yi S., Jacobson E., Novack S., and Rice C., 2020, A selectable, plasmid-based system to generate CRISPR/Cas9 gene edited and knock-in mosquito cell lines, Scientific Reports, 11: 736. https://doi.org/10.1038/s41598-020-80436-5 Sanchez C., Wu S., Bennett J., and Marshall J., 2019, MGDrivE: a modular simulation framework for the spread of gene drives through spatially explicit mosquito populations, Methods in Ecology and Evolution, 11: 229-239. https://doi.org/10.1111/2041-210X.13318 Schairer C., Triplett C., Akbari O., and Bloss C., 2022, California residents’ perceptions of gene drive systems to control mosquito-borne disease, Frontiers in Bioengineering and Biotechnology, 10: 848707. https://doi.org/10.3389/fbioe.2022.848707 Tay A., and Melosh N., 2019, Transfection with nanostructure electro-injection is minimally perturbative, Advanced Therapeutics, 2(12): 1900133. https://doi.org/10.1002/adtp.201900133 Terradas G., Macias V., Peterson H., McKeand S., Krawczyk G., and Rasgon J., 2023, The development and expansion of in vivo germline editing technologies in arthropods: Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and beyond, Integrative and Comparative Biology, 63(6): 1550-1563. https://doi.org/10.1093/icb/icad123 Wang G., Gamez S., Raban R., Marshall J., Alphey L., Li M., Rasgon J., and Akbari O., 2021, Combating mosquito-borne diseases using genetic control technologies, Nature Communications, 12: 4388. https://doi.org/10.1038/s41467-021-24654-z Wang J., and Doudna J., 2023, CRISPR technology: a decade of genome editing is only the beginning, Science, 379: eadd8643. https://doi.org/10.1126/science.add8643 Wang Y., He X., Qiao L., Yu Z., Chen B., and He Z., 2022, CRISPR/Cas9 mediates efficient site-specific mutagenesis of the odorant receptor co-receptor (Orco) in the malaria vector Anopheles sinensis, Pest Management Science, 78(8): 3294-3304. https://doi.org/10.1002/ps.6954 Weaver S., Charlier C., Vasilakis N., and Lecuit M., 2018, Zika, Chikungunya, and other emerging vector-borne viral diseases, Annual Review of Medicine, 69: 395-408. https://doi.org/10.1146/annurev-med-050715-105122 Whiteman A., Loaiza J., Yee D., Poh K., Watkins A., Lucas K., Rapp T., Kline L., Ahmed A., Chen S., Delmelle E., and Oguzie J., 2020, Do socioeconomic factors drive Aedes mosquito vectors and their arboviral diseases? A systematic review of dengue, chikungunya, yellow fever, and Zika Virus, One Health, 11: 100188. https://doi.org/10.1016/j.onehlt.2020.100188

RkJQdWJsaXNoZXIy MjQ4ODYzMg==