GAB_2024v15n2

Genomics and Applied Biology 2024, Vol.15, No.2, 107-119 http://bioscipublisher.com/index.php/gab 117 Cisnetto V., and Barlow J., 2020, The development of complex and controversial innovations, Genetically Modified Mosquitoes for Malaria Eradication, Research Policy, 49(3): 103917. https://doi.org/10.1016/j.respol.2019.103917 Cunha M., Costa P., Corrêa I., Souza M., Calil P., Silva G., Costa S., Fonseca V., and Costa L., 2020, Chikungunya virus: an emergent arbovirus to the south American continent and a continuous threat to the world, Frontiers in Microbiology, 11: 1297. https://doi.org/10.3389/fmicb.2020.01297 Edgerton S., Thongsripong P., Wang C., Montaya M., Balmaseda A., Harris E., and Bennett S., 2020, Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses, Infection, Genetics and Evolution : Journal Of Molecular Epidemiology And Evolutionary Genetics In Infectious Diseases, 92: 104680. https://doi.org/10.1016/j.meegid.2020.104680 Fajrial A., He Q., Wirusanti N., Slansky J., and Ding X., 2020, A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing, Theranostics, 10: 5532-5549. https://doi.org/10.7150/thno.43465 Feng X., Amo V., Mameli E., Lee M., Bishop A., Perrimon N., and Gantz V., 2021, Optimized CRISPR tools and site-directed transgenesis towards gene drive development in Culex quinquefasciatus mosquitoes, Nature Communications, 12: 2960. https://doi.org/10.1038/s41467-021-23239-0 Grigoraki L., Cowlishaw R., Nolan T., Donnelly M., Lycett G., and Ranson H., 2021, CRISPR/Cas9 modified An. gambiae carrying kdr mutation L1014F functionally validate its contribution in insecticide resistance and combined effect with metabolic enzymes, PLoS Genetics, 17(7): e1009556. https://doi.org/10.1371/journal.pgen.1009556 Guo C., Ma X., Gao F., and Guo Y., 2023, Off-target effects in CRISPR/Cas9 gene editing, Frontiers in Bioengineering and Biotechnology, 11: 1143157. https://doi.org/10.3389/fbioe.2023.1143157 Gupta D., Bhattacharjee O., Mandal D., Sen M., Dey D., Dasgupta A., Kazi T., Gupta R., Sinharoy S., Acharya K., Chattopadhyay D., Ravichandiran V., Roy S., and Ghosh, D., 2019, CRISPR-Cas9 system: A new-fangled dawn in gene editing, Life Sciences, 232(1): 116636. https://doi.org/10.1016/j.lfs.2019.116636 Hammond A., Pollegioni P., Persampieri T., North A., Minuz R., Trusso A., Bucci A., Kyrou K., Morianou I., Simoni A., Nolan T., Müller R., and Crisanti A., 2021, Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field, Nature Communications, 12: 4589. https://doi.org/10.1038/s41467-021-24790-6 Hegde S., Nilyanimit P., Kozlova E., Anderson E., Narra H., Sahni S., Heinz E., and Hughes G., 2019, CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes, PLoS Neglected Tropical Diseases, 13(12): e0007883. https://doi.org/10.1371/journal.pntd.0007883 James S., Collins F., Welkhoff P., Emerson C., Godfray H., Gottlieb M., Greenwood B., Lindsay S., Mbogo C., Okumu F., Okumu F., Okumu F., Quemada H., Savadogo M., Singh J., Tountas K., and Touré Y., 2018, Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in Sub-Saharan Africa: recommendations of a scientific working group, The American Journal of Tropical Medicine and Hygiene, 98: 1-49. https://doi.org/10.4269/ajtmh.18-0083 Jones R., Kulkarni M., Davidson T., and Talbot B., 2019, Arbovirus vectors of epidemiological concern in the Americas: a scoping review of entomological studies on Zika, dengue and chikungunya virus vectors, PLoS ONE, 15(2): e022075. https://doi.org/10.1371/journal.pone.0220753 Khan S., 2019, Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. molecular therapy, Nucleic Acids, 16: 326-334. https://doi.org/10.1016/j.omtn.2019.02.027 Lanzaro G., Campos M., Crepeau M., Cornel A., Estrada A., Gripkey H., Haddad Z., Kormos A., Palomares S., and Sharpee W., 2021, Selection of sites for field trials of genetically engineered mosquitoes with gene drive, Evolutionary Applications, 14: 2147-2161. https://doi.org/10.1111/eva.13283 Laursen W., Busby R., Sarkissian T., Chang E., and Garrity P., 2023, DMKPs provide a generalizable strategy for studying genes required for reproduction or viability in non-traditional model organisms, Genetics, 224(2): iyad057. https://doi.org/10.1093/genetics/iyad057 Leftwich P., Edgington M., Harvey‐Samuel T., Paladino L., Norman V., and Alphey L., 2018, Recent advances in threshold-dependent gene drives for mosquitoes, Biochemical Society Transactions, 46: 1203-1212. https://doi.org/10.1042/BST20180076 Li H., Yang Y., Hong W., Huang M., Wu M., and Zhao X., 2020, Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects, Signal Transduction and Targeted Therapy, 5: 1. https://doi.org/10.1038/s41392-019-0089-y Li L., Hu S., and Chen X., 2018, Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities, Biomaterials, 171: 207-218. https://doi.org/10.1016/j.biomaterials.2018.04.031

RkJQdWJsaXNoZXIy MjQ4ODYzMg==