GAB_2024v15n2

Genomics and Applied Biology 2024, Vol.15, No.2, 99-106 http://bioscipublisher.com/index.php/gab 106 Hamar J., and Kültz D., 2020, An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters, Scientific Reports, 11: 7854. https://doi.org/10.1038/s41598-021-87068-3 Kishimoto K., Washio Y., Yoshiura Y., Toyoda A., Ueno T., Fukuyama H., Kato K., and Kinoshita M., 2018, Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9, Aquaculture, 495: 415-427. https://doi.org/10.1016/J.AQUACULTURE.2018.05.055 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, Journal of Zhejiang University. Science. B, 22: 253-284. https://doi.org/10.1631/jzus.B2100009 Li M., and Wang D., 2017, Gene editing nuclease and its application in tilapia, Science Bulletin, 62(3): 165-173. https://doi.org/10.1016/J.SCIB.2017.01.003 Li M., Dai S., Liu X., Xiao H., and Wang D., 2020, A detailed procedure for CRISPR/Cas9-mediated gene editing in tilapia, Hydrobiologia, 848: 3865-3881. https://doi.org/10.1007/s10750-020-04414-8 Okoli A., Blix T., Myhr A., Xu W., and Xu X., 2021, Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective, Transgenic Research, 31: 1-21. https://doi.org/10.1007/s11248-021-00274-7 Richardson C., Kelsh R., and Richardson R., 2023, New advances in CRISPR/Cas-mediated precise gene-editing techniques, Disease Models & Mechanisms, 16 (2): dmm049874. https://doi.org/10.1242/dmm.049874 Robinson N., Østbye T., Kettunen A., Coates A., Barrett L., Robledo D., and Dempster T., 2023, A guide to assess the use of gene editing in aquaculture, Reviews in Aquaculture, 16(2): 775-784. https://doi.org/10.1111/raq.12866 Roy S., Kumar V., Behera B., Parhi J., Mohapatra S., Chakraborty T., and Das B., 2022, CRISPR/Cas genome editing—can it become a game changer in future fisheries sector? Front. Mar. Sci., 9: 924475. https://doi.org/10.3389/fmars.2022.924475 Segev-Hadar A., Slosman T., Rozen A., Sherman A., Cnaani A., and Biran J., 2021, Genome editing using the CRISPR-Cas9 system to generate a solid-red germline of nile tilapia (Oreochromis niloticus), The CRISPR Journal, 4(4): 583-594. https://doi.org/10.1089/crispr.2020.0115 Simora R., Xing D., Bangs M., Wang W., Ma X., Su B., Khan M., Qin Z., Lu C., Alston V., Hettiarachchi D., Johnson A., Li S., Coogan M., Gurbatow J., Terhune J., Wang X., and Dunham R., 2020, CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome, Scientific Reports, 10: 22271. https://doi.org/10.1038/s41598-020-79409-5 Tang Y., Zhang Z., Yang Z., and Wu J., 2023, CRISPR/Cas9 and Agrobacterium tumefaciens virulence proteins synergistically increase efficiency of precise genome editing via homology directed repair in plants, Journal of Experimental Botany, 74(12): 3518-3530. https://doi.org/10.1093/jxb/erad096 Villapando A., Hamar J., and Kültz D., 2020, Optimization of Cas9 nuclear localization in a tilapia (Oreochromis mossambicus) cell line, The FASEB Journal, 34(S1): 1. https://doi.org/10.1096/fasebj.2020.34.s1.06452 Wang H., Li M., Lee C., Chakraborty S., Kim H., Bao G., and Leong K., 2017, CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery, Chemical Reviews, 117(15): 9874-9906. https://doi.org/10.1021/acs.chemrev.6b00799 Wang H., Russa M., and Qi L., 2016, CRISPR/Cas9 in genome editing and beyond, Annual Review of Biochemistry, 85: 227-264. https://doi.org/10.1146/annurev-biochem-060815-014607 Xia Y., Lu M., Chen G., Cao J., Gao F., Wang M., Liu Z., Zhang D., Zhu H., and Yi M., 2018, Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus, Fish & Shellfish Immunology, 76: 368-379. https://doi.org/10.1016/j.fsi.2018.03.020

RkJQdWJsaXNoZXIy MjQ4ODYzMg==