Genomics and Applied Biology 2024, Vol.15, No.2, 89-98 http://bioscipublisher.com/index.php/gab 97 Gu B., Posfai E., and Rossant J., 2018, Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos, Nature Biotechnology, 36: 632-637. https://doi.org/10.1038/nbt.4166 Guen Y., Pichon C., Guégan P., Pluchon K., Haute T., Quemener S., Ropars J., Midoux P., Gall T., and Montier T., 2021, DNA nuclear targeting sequences for enhanced non-viral gene transfer: an in vitro and in vivo study, Molecular Therapy. Nucleic Acids, 24: 477-486. https://doi.org/10.1016/j.omtn.2021.03.012 Gultom V., 2023, Past, present and future prospect on microinjection gene transfer in aquaculture, IOP Conference Series: Earth and Environmental Science, 1137(1): 012040. https://doi.org/10.1088/1755-1315/1137/1/012040 Guppy J., Jones D., Jerry D., Wade N., Raadsma H., Huerlimann R., and Zenger, K. 2018, The state of “omics” research for farmed penaeids: advances in research and impediments to industry utilization, Frontiers in Genetics, 9: 282. https://doi.org/10.3389/fgene.2018.00282 Gutási A., Hammer S., El-Matbouli M., and Saleh M., 2023, Review: recent applications of gene editing in fish species and aquatic medicine, Animals: an Open Access Journal from MDPI, 13(7): 1250. https://doi.org/10.3390/ani13071250 Jacinda A., and Yustiati A., 2021, Gen transfer in cultivation shrimp commodity, Torani Journal of Fisheries and Marine Science, 5(1): 29-40. https://doi.org/10.35911/torani.v5i1.18919 Kimura T., Ferrán B., Tsukahara Y., Shang Q., Desai S., Fedoce A., Pimentel D., Luptak I., Adachi T., Ido Y., Matsui R., and Bachschmid M., 2019, Production of adeno-associated virus vectors for in vitro and in vivo applications, Scientific Reports, 9: 13601. https://doi.org/10.1038/s41598-019-49624-w Kishimoto K., Washio Y., Yoshiura Y., Toyoda A., Ueno T., Fukuyama H., Kato K., and Kinoshita M., 2018, Production of a breed of red sea breamPagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9, Aquaculture, 495(1): 415-427. https://doi.org/10.1016/J.AQUACULTURE.2018.05.055 Lane M., Mis E., and Khokha M., 2021, Microinjection of xenopus tropicalis embryos, Cold Spring Harbor protocols, 2022(4): pdb. prot107644. https://doi.org/10.1101/pdb.prot107644 Lee P., Tran H., Huang H., Nan F., and Lee M., 2020, Sargassumhorneri extracts stimulate innate immunity, enhance growth performance, and upregulate immune genes in the white shrimp Litopenaeus vannamei, Fish and Shellfish Immunology, 102: 276-285. https://doi.org/10.1016/j.fsi.2020.04.049 Sun P., Venzon N., Calderon F., and Esaki D., 2005, Evaluation of methods for DNA delivery into shrimp zygotes of Penaeus (Litopenaeus) vannamei, Aquaculture, 243: 19-26. https://doi.org/10.1016/J.AQUACULTURE.2004.09.037 Sun Y., and Zhu Z., 2019, Designing future farmed fishes using genome editing, Science China Life Sciences, 62: 420-422. https://doi.org/10.1007/s11427-018-9467-x Takahashi G., Gurumurthy C.B., Wada K., Miura H., Sato M., and Ohtsuka M., 2015, GONAD: genome-editing via oviductal nucleic acids delivery system: a novel microinjection independent genome engineering method in mice, Scientific Reports, 5: 11406. https://doi.org/10.1038/srep11406 Tarakanchikova Y., Alzubi J., Pennucci V., Follo M., Kochergin B., Muslimov A., Skovorodkin I., Vainio S., Antipina M., Atkin V., Popov A., Meglinski I., Cathomen T., Cornu T., Gorin D., Sukhorukov G., and Nazarenko I., 2019, Biodegradable nanocarriers resembling extracellular vesicles deliver genetic material with the highest efficiency to various cell types, Small, 16(3): 1904880. https://doi.org/10.1002/smll.201904880 Wang B., Huang J., Zhang M., Wang Y., Wang H., Ma Y., Zhao X., Wang X., Liu C., Huang H., Liu Y., Lu F., Yu H., Shao M., and Kang Z., 2020, Carbon dots enable efficient delivery of functional DNA in plants, ACS Applied Bio Materials, 3(12): 8857-8864. https://doi.org/10.1021/acsabm.0c01170 Wang J., and Cheng Y., 2023, Harnessing antimicrobial peptide genes to expedite disease-resistant enhancement in aquaculture: transgenesis and genome editing, bioRxiv. https://doi.org/10.1101/2023.01.05.522886 Williams S., and Knowlton N., 2001, Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus, Molecular Biology And Evolution, 18(8): 1484-1493. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A003934 Wolfus G., Garcia D., and Alcivar-Warren A., 1997, Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs, Aquaculture, 152: 35-47. https://doi.org/10.1016/S0044-8486(96)01527-X Wu M., Hu Q., Zhou Y., and Guo H., 2021, Development of a VP28-pseudotyped baculovirus expression system for efficient gene transfer in penaeid shrimps, Aquaculture, 541:736741. https://doi.org/10.1016/J.AQUACULTURE.2021.736741 Yu Y., Luo Z., Wang Q., Zhang Q., Zhang X., Xiang J., and Li F., 2020, Development of high throughput SNP genotyping approach using target sequencing in Pacific white shrimp and its application for genetic study, Aquaculture, 528: 735549. https://doi.org/10.1016/j.aquaculture.2020.735549
RkJQdWJsaXNoZXIy MjQ4ODYzMg==