GAB_2024v15n1

Genomics and Applied Biology 2024, Vol.15, No.1, 54-63 http://bioscipublisher.com/index.php/gab 62 evolution of rice genomes. The identification of positively selected genes involved in key traits such as flower development, ripening, and stress response further underscores the potential of genomic research to enhance rice breeding programs. The advancements in genomic research within the Oryza genus have not only deepened our understanding of rice genome diversity and evolutionary mechanisms but also provided invaluable tools and insights for future rice research and breeding efforts. Continued exploration and conservation of wild Oryza species will be essential to harness their genetic potential for the development of resilient and high-yielding rice varieties, ultimately contributing to global food security. Acknowledgments We would like to express our gratitude to the two anonymous peer reviewers for their critical assessment and constructive suggestions on our manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Abdullah-Zawawi M.R., Ahmad-Nizammuddin N.F., Govender N., Harun S., Mohd-Assaad N., and Mohamed-Hussein Z.A., 2021, Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice, Sci. Rep., 11(1): 19678. https://doi.org/10.1038/s41598-021-99206-y Chen E., Huang X., Tian Z., Wing R., and Han B., 2019, The genomics of Oryza species provides insights into rice domestication and heterosis, Annu. Rev. Plant. Biol., 70: 639-665. https://doi.org/10.1146/annurev-arplant-050718-100320 Dai S., Zhu X., Hutang G., Li J., Tian J., Jiang X., Zhang D., and Gao L., 2022, Genome size variation and evolution driven by transposable elements in the genus Oryza. Front. Plant Sci., 13. https://doi.org/10.3389/fpls.2022.921937 Li W., Li K., Huang Y., Shi C., Hu W., Zhang Y., Zhang Q., Xia E., Hutang G., Zhu X., Liu Y., Liu Y., Tong Y., Zhu T., Huang H., Zhang D., Zhao Y., Jiang W., Yuan J., Niu Y., Gao C., and Gao L., 2020, SMRT sequencing of the Oryza rufipogon genome reveals the genomic basis of rice adaptation, Commun. Biol., 3: 167. https://doi.org/10.1038/s42003-020-0890-8 Liu Q., Liang Z., Feng D., Jiang S., Wang Y., Du Z., Li R., Hu G., Zhang P., Ma Y., Lohmann J.U., and Gu X., 2021, Transcriptional landscape of rice roots at the single-cell resolution, Mol. Plant., 14(3): 384-394. https://doi.org/10.1016/j.molp.2020.12.014 Ohyanagi H., Ebata T., Huang X., Gong H., Fujita M., Mochizuki T., Toyoda A., Fujiyama A., Kaminuma E., Nakamura Y., Feng Q., Wang Z., Han B., and Kurata N., 2015, OryzaGenome: genome diversity database of wild Oryza species, Plant and Cell Physiology, 57(1): e1. https://doi.org/10.1093/pcp/pcv171 Qin P., Lu H., Du H., Wang H., Chen W., Chen Z., He Q., Ou S., Zhang H., Li X., Li X., Li Y., Liao Y., Gao Q., Tu B., Yuan H., Ma B., Wang Y., Qian Y., Fan S., Li W., Wang J., He M., Yin J., Li T., Jiang N., Chen X., Liang C., and Li S., 2021, Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations, Cell, 184(13): 3542-3558. https://doi.org/10.1016/j.cell.2021.04.046 Raza Q., Rashid M.A.R., Waqas M., Ali Z., Rana I.A., Khan S.H., Khan I.A., and Atif R.M., 2023, Genomic diversity of aquaporins across genus Oryza provides a rich genetic resource for development of climate resilient rice cultivars, BMC Plant Biol., 23(1): 172. https://doi.org/10.1186/s12870-023-04151-9 Sakai H., Tanaka T., Antonio B., Itoh T., and Sasaki T., 2014, Chapter Five - The First Monocot Genome Sequence: Oryza sativa (Rice), Advances in Botanical Research, 69: 119-135. https://doi.org/10.1016/B978-0-12-417163-3.00005-6 Sha G., Sun P., Kong X., Han X., Sun Q., Fouillen L., Zhao J., Li Y., Yang L., Wang Y., Gong Q., Zhou Y., Zhou W., Jain R., Gao J., Huang R., Chen X., Zheng L., Zhang W., Qin Z., Zhou Q., Zeng Q., Xie K., Xu J., Chiu T.Y., Guo L., Mortimer J.C., Boutté Y., Li Q., Kang Z., Ronald P.C., and Li G., 2023, Genome editing of a rice CDP-DAG synthase confers multipathogen resistance, Nature, 618(7967): 1017-1023. https://doi.org/10.1038/s41586-023-06205-2 Stein J., Yu Y., Copetti D., Zwickl D., Zhang L., Zhang C., Chougule K., Gao D., Iwata A., Goicoechea J., Wei S., Wang J., Liao Y., Wang M., Jacquemin J., Becker C., Kudrna D., Zhang J., Londono C., Song X., Lee S., Sanchez P., Zuccolo A., Ammiraju J., Talag J., Danowitz A., Rivera L., Gschwend A., Noutsos C., Wu C., Kao S., Zeng J., Wei F., Zhao Q., Feng Q., Baidouri M., Carpentier M., Lasserre E., Cooke R., Farias D., Maia L., Santos R., Nyberg K., McNally K., Mauleon R., Alexandrov N., Schmutz J., Flowers D., Fan C., Weigel D., Jena K., Wicker T., Chen M., Han B., Henry R., Hsing Y., Kurata N., Oliveira A., Panaud O., Jackson S., Machado C., Sanderson M., Long M., Ware D., and Wing R., 2018, Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza, Nature Genetics, 50: 285-296. https://doi.org/10.1038/s41588-018-0040-0

RkJQdWJsaXNoZXIy MjQ4ODYzMg==