GAB_2024v15n1

Genomics and Applied Biology 2024, Vol.15, No.1, 47-53 http://bioscipublisher.com/index.php/gab 53 Gomez M.A., Berkoff K.C., Gill B.K., Iavarone A.T., Lieberman S.E., Ma J.M., Schultink A., Karavolias N.G., Wyman S.K., Chauhan R.D., Taylor N.J., Staskawicz B.J., Cho M.J., Rokhsar D.S., and Lyons J.B., 2023, CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production, Front. Plant Sci., 13: 1079254. https://doi.org/10.3389/fpls.2022.1079254 Li C., Brant E., Budak H., and Zhang B., 2021, CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement, J. Zhejiang Univ. Sci. B22: 253-284. https://doi.org/10.1631/jzus.B2100009 Mehta D., Stürchler A., Anjanappa R., Zaidi S., Hirsch-Hoffmann M., Gruissem W., and Vanderschuren H., 2019, Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses, Genome Biology, 20: 80. https://doi.org/10.1186/s13059-019-1678-3 Mehta D., Stürchler A., Anjanappa R., Zaidi S., Hirsch-Hoffmann M., Gruissem W., and Vanderschuren H., 2019, Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses, Genome. Biol., 20: 80. https://doi.org/10.1186/s13059-019-1678-3 Ntsomboh-Ntsefong G., Seyum E., Kingsley T., Kassie F., Gabriel M., Shariati M., Hristova V., Martin B., and Emmanuel Y., 2023, CRISPR-Cas-based genome editing for crop improvement: progress, challenges and future prospects, Global Journal Of Botanical Science, 11: 28-33. https://doi.org/10.12974/2311-858x.2023.11.3 Robertson G., Burger J., and Campa M., 2022, CRISPR/Cas‐based tools for the targeted control of plant viruses, Molecular Plant Pathology, 23(11): 1701-1718. https://doi.org/10.1111/mpp.13252 Schenke D., and Cai D., 2020, Applications of CRISPR/Cas to improve crop disease resistance: beyond inactivation of susceptibility factors, iScience, 23(9): 101478. https://doi.org/10.1016/j.isci.2020.101478 Shahriar S., Islam M., Chun C., Rahim M., Paul N., Uddain J., and Siddiquee S., 2021, Control of Plant viral diseases by CRISPR/Cas9: resistance mechanisms, strategies and challenges in food crops., Plants, 10(7): 1264. https://doi.org/10.3390/plants10071264 Tang Q., Wang X., Jin X., Peng J., Zhang H., and Wang Y., 2023, CRISPR/Cas technology revolutionizes crop breeding, Plants (Basel), 12(17): 3119. https://doi.org/10.3390/plants12173119 Tao S., Chen H., Li N., and Liang W., 2022, The application of the CRISPR-Cas system in antibiotic resistance, Infection and Drug Resistance, 15: 4155-4168. https://doi.org/10.2147/IDR.S370869 Tussipkan D., and Manabayeva S.A., 2021, Employing CRISPR/Cas technology for the improvement of potato and other tuber crops, Front. Plant Sci., 12: 747476. https://doi.org/10.3389/fpls.2021.747476 Wheatley M., and Yang Y., 2020, Versatile applications of the CRISPR/Cas toolkit in plant pathology and disease management, Phytopathology, 111(7): 25. https://doi.org/10.1094/phyto-08-20-0322-ia Zhu H., Li C., and Gao C., 2020, Applications of CRISPR–Cas in agriculture and plant biotechnology, Nature Reviews Molecular Cell Biology, 21: 661-677. https://doi.org/10.1038/s41580-020-00288-9 Disclaimer/Publisher's Note The statements, opinions, and data contained in all publications are solely those of the individual authors and contributors and do not represent the views of the publishing house and/or its editors. The publisher and/or its editors disclaim all responsibility for any harm or damage to persons or property that may result from the application of ideas, methods, instructions, or products discussed in the content. Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==