GAB_2024v15n1

Genomics and Applied Biology 2024, Vol.15, No.1, 27-38 http://bioscipublisher.com/index.php/gab 37 Danev R., Yanagisawa H., and Kikkawa M., 2019, Cryo-electron microscopy methodology: current aspects and future directions, Trends in Biochemical Sciences, 44(10): 837-848. https://doi.org/10.1016/j.tibs.2019.04.008 Engen J., and Komives E., 2020, Complementarity of hydrogen/deuterium exchange mass spectrometry and cryo-electron microscopy, Trends in Biochemical Sciences, 45(10): 906-918. https://doi.org/10.1016/j.tibs.2020.05.005 Faruqi A., and McMullan G., 2018, Direct imaging detectors for electron microscopy, Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, 878: 180-190. https://doi.org/10.1016/j.nima.2017.07.037 Jonić S., and Vénien-Bryan C., 2009, Protein structure determination by electron cryo-microscopy, Current opinion in pharmacology, 9(5): 636-642. https://doi.org/10.1016/j.coph.2009.04.006 Ki H., Jo J., Kim Y., Kim T., Kim C., Kim Y., Kim C., Muniyappan S., Lee S., Kim Y., Kim H., Yang Y., Rhee Y., and Ihee H., 2021, Uncovering the conformational distribution of a small protein with nanoparticle-aided cryo-electron microscopy sampling, The Journal of Physical Chemistry Letters, 12(28): 6565-6573. https://doi.org/10.1021/acs.jpclett.1c01277 Kordyukova L., Moiseenko A., Timofeeva T., and Fedyakina I., 2023, Cryo-electron microscopy of enveloped viruses using upgraded transmission electron microscope: Influenza type A, B viruses and SARS-CoV-2, Vestnik Moskovskogo universiteta. Seria 16. Biologia., 78(3S): 21-26. https://doi.org/10.55959/10.55959/MSU0137-0952-16-78-3S-4 Kühlbrandt W., 2022, Concluding remarks: Challenges and future developments in biological electron cryo-microscopy, Faraday Discussions, 240: 13. https://doi.org/10.1039/D2FD90062A Kumar A.P.S., Gulati S., and Dutta S., User-friendly, High-throughput, and fully automated data acquisition software for single-particle cryo-electron microscopy, J. Vis. Exp.,(173): e62832. Li S., Ji G., Shi Y., Klausen L., Niu T., Wang S., Huang X., Ding W., Zhang X., Dong M., Xu W., and Sun F., 2018, High-vacuum optical platform for cryo-CLEM (HOPE): A new solution for non-integrated multiscale correlative light and electron microscopy, Journal of Structural Biology, 201(1): 63-75. https://doi.org/10.1016/j.jsb.2017.11.002 Liu Y., Huynh D., and Yeates T., 2019, A 3.8 Å resolution cryo-EM structure of a small protein bound to an imaging scaffold, Nature Communications, 10: 1864. https://doi.org/10.1038/s41467-019-09836-0 Mielanczyk L., Matysiak N., Michalski M., Bułdak R., and Wojnicz R., 2014, Closer to the native state. Critical evaluation of cryo-techniques for Transmission Electron Microscopy: preparation of biological samples, Folia Histochemica et Cytobiologica, 52(1): 1-17. https://doi.org/10.5603/FHC.2014.0001 Mitra A., 2019, Visualization of biological macromolecules at near-atomic resolution: cryo-electron microscopy comes of age, Acta crystallographica. Section F, Structural biology communications, 75(1): 3-11. https://doi.org/10.1107/S2053230X18015133 Nakane T., Kotecha A., Sente A., McMullan G., Masiulis S., Brown P., Grigoras I., Malinauskaite L., Malinauskas T., Miehling J., Yu L., Karia D., Pechnikova E., Jong E., Keizer J., Bischoff M., McCormack J., Tiemeijer P., Hardwick S., Chirgadze D., Murshudov G., Aricescu A., and Scheres S., 2020, Single-particle cryo-EM at atomic resolution, Nature, 587: 152-156. https://doi.org/10.1038/s41586-020-2829-0 Nygaard R., Kim J., and Mancia F., 2020, Cryo-electron microscopy analysis of small membrane proteins, Current Opinion in Structural Biology, 64: 26-33. https://doi.org/10.1016/j.sbi.2020.05.009 Orlov I., Myasnikov A., Andronov L., Natchiar S., Khatter H., Beinsteiner B., Ménétret J., Hazemann I., Mohideen K., Tazibt K., Tabaroni R., Kratzat H., Djabeur N., Bruxelles T., Raivoniaina F., Pompeo L., Torchy M., Billas I., Urzhumtsev A., and Klaholz B., 2017, The integrative role of cryo electron microscopy in molecular and cellular structural biology, Biology of the Cell, 109: 81-93. https://doi.org/10.1111/boc.201600042 Punjani A., Rubinstein J., Fleet D., and Brubaker M., 2017, cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination, Nature Methods, 14: 290-296. https://doi.org/10.1038/nmeth.4169 Renaud J., Chari A., Ciferri C., Liu W., Rémigy H., Stark H., and Wiesmann C., 2018, Cryo-EM in drug discovery: achievements, limitations and prospects, Nature Reviews Drug Discovery, 17: 471-492. https://doi.org/10.1038/nrd.2018.77 Schmidt C., and Urlaub H., 2017, Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies, Current opinion in structural biology, 46: 157-168. https://doi.org/10.1016/j.sbi.2017.10.005 Shoemaker S., and Ando N., 2018, X-rays in the cryo-electron microscopy era: structural biology's dynamic future, Biochemistry, 57(3): 277-285. https://doi.org/10.1021/acs.biochem.7b01031 Spilman M., 2020, Optimization of Cryo-EM data collection using advanced direct detectors, Microscopy and Microanalysis, 26: 1716-1716.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==