GAB_2024v15n1

Genomics and Applied Biology 2024, Vol.15, No.1, 12-21 http://bioscipublisher.com/index.php/gab 21 such as GWAS and modern biotechnology, we have reason to believe that we can effectively improve the disease resistance of corn and make greater contributions to global food security. References Benson J.M., Poland J.A., Benson B.M., 2015, Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association map and near-isogenic line analysis, PLoS Genetics, 11(3): e1005045. https://doi.org/10.1371/journal.pgen.1005045 Flint-Garcia S.A., Thuillet A.C., and Yu J., 2005, Maize association population: A high-resolution platform for quantitative trait locus dissection, Plant Journal, 44(6), 1054-1064. https://doi.org/10.1111/j.1365-313X.2005.02591.x Hu C., Kuang T., Shaw R.K., 2024, Genetic dissection of resistance to gray leaf spot by genome-wide association study in a multi-parent maize population, BMC Plant Biology, 24(1): 10. https://doi.org/10.1186/s12870-023-04701-1 Kuki M.C., Scapim C.A., Rossi E.S., Mangolin C.A., do Amaral Júnior A.T., and Pinto R.J.B., 2018, Genome wide association study for gray leaf spot resistance in tropical maize core, PLoS One, 13(6): e0199539. https://doi.org/10.1371/journal.pone.0199539 Lee J.H., Mazarei M., and Pfotenhauer A.C., 2020, Epigenetic footprints of CRISPR/Cas9-mediated genome editing in plants, Frontiers in plant science, 10: 1720. https://doi.org/10.3389/fpls.2019.01720 Murray M.G., and Thompson W.F., 1980, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Research, 8(19): 4321-4325. https://doi.org/10.1093/nar/8.19.4321 Poland J.A., Balint-Kurti P.J., Wisser R.J., Pratt R.C., and Nelson R.J., 2011, Shades of gray: the world of quantitative disease resistance, Trends in Plant Science, 16(1): 21-29. https://doi.org/10.1016/j.tplants.2008.10.006 Poland J.A., Endelman J., and Dawson J., 2012, Genomic selection in wheat breeding using genotyping-by-sequencing, Plant Genome, 5(3): 103-113. https://doi.org/10.3835/plantgenome2012.06.0006 Ren J., Wu P., and Huestis G.M., 2022, Identification and fine map of a major QTL (qRtsc8-1) conferring resistance to maize tar spot complex and validation of production markers in breeding lines, Theoretical and Applied Genetics, 135(5): 1551-1563. https://doi.org/10.1007/s00122-022-04053-8 Shi L., Lv X., and Weng J., 2014, Genetic characterization and linkage disequilibrium map of resistance to gray leaf spot in maize (Zea mays L.), The Crop Journal, 2(2-3): 132-143. https://doi.org/10.1016/j.cj.2014.02.001 Shu G.P., Wang A.F., Wang X.C., Ding J.Q., Chen R.J., Gao F., Wang A.F., Li T., and Wang Y.B., 2023, Identification of southern corn rust resistance QTNs in Chinese summer maize germplasm via multi-locus GWAS and post-GWAS analysis, Frontiers in Plant Science, 14: 1221395. https://doi.org/10.3389/fpls.2023.1221395 Wang Y., 2019, Application of CRISPR/Cas9-mediated gene editing for the improvement of disease resistance in plants, Plant Science, 280: 412-418. Weng J.F., Chuanxiao Xie C.X., Zhuanfang Hao Z.F., Jianjun Wang J.J., Changlin Liu C.L., Mingshun Li M.S., Degui Zhang D.G., Bai L., Zhang S.H., Li X.H., 2011, Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines, PLoS One, 6(12): e29229. https://doi.org/10.1371/journal.pone.0029229 Yao L.S., Li Y.M., Ma C.Y., Tong L.X., Du F.L., and Xu M.L., 2020, Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize, J.I.P.B., 62(10):17. https://doi.org/10.1111/jipb.12911 Zhang, 2017, Integration of GWAS results with a maize high-density SNP array improves maize crop resistance to diseases, Molecular Plant Pathology, 18(8): 1047-1055.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==